
Guidewire PolicyCenter ™

ISBTF and GUnit Testing Guide

Release 10.1.2

© 2021 Guidewire Software, Inc.
For information about Guidewire trademarks, visit http://guidewire.com/legal-notices.
Guidewire Proprietary & Confidential — DO NOT DISTRIBUTE

Product Name: Guidewire PolicyCenter
Product Release: 10.1.2
Document Name: ISBTF and GUnit Testing Guide
Document Revision: 14-June-2021

http://guidewire.com/legal-notices

Contents

Guidewire Documentation .7
About PolicyCenter documentation .7
Support .9

Part 1
Getting started

1 Behavior Testing Framework overview .13
Goals of Behavior Testing Framework .13
Technologies used in Behavior Testing Framework .14

2 Installing Behavior Testing Framework .17
Install Behavior Testing Framework. .17
Verify the Behavior Testing Framework installation. .18
Resolving errors that occur during verification .19

3 Behavior Testing Framework architecture .21
Behavior Testing Framework layers .21

The business layer .21
The mapping layer .22
The context implementation layer. .23

4 Writing scenarios. .31
Scenarios overview .31
Scenario structure .32

Scenario names .32
Scenario steps overview .32
Given, When, and Then steps. .33
Data tables. .33

Feature file overview .33
Feature file structure .34
Attributes available throughout a feature file .35

Best practices for scenario design .35
Conduct scenario grooming meetings .36
Include both narrow and end-to-end tests. .36

Best practices for scenario language. .36
Evaluate the usability of the base configuration scenarios .38

Working with feature files .39
Feature file location .39
Feature file names .39
Create a feature file. .39
Adding scenarios to a feature file .40

5 Running scenarios .41
Overview of running scenarios .41
Test servers. .41
Running feature files from Studio .43

Run an individual scenario from Studio. .43

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

3

Run feature files from Studio .43
Running groups of feature files .43

Create a test suite class .44
Example test suite. .45
Running a test suite from Studio. .45
Running a test suite from a command prompt. .45

Part 2
Mapping steps to implementation code

6 Creating step methods .49
Glue code in Behavior Testing Framework .49

Context Factory .50
RemoteSmokeTestHelperModule .51
Step methods .52

Step method structure. .53
The scenario step connector .53
The method declaration .54
The method body .55

Step classes. .55
Step class structure .55
Best practices for creating step class files .55

7 Extending context APIs .57
Overview of LOB-agnostic context APIs .57
LOB-agnostic context API resources .57

Base configuration resources for LOB-agnostic business contexts .58
Extending base configuration context APIs .58

Extending a base configuration context API .59
Extend a base configuration context API .60
Step 1: Creating scenarios that have new steps .60
Step 2: Creating the step method .61
Step 3: Extending the context API interface .62
Step 4: Extending the context API impl. .63
Step 5: Modifying ContextFactory .64
Step 6: Modifying ContextFactoryImpl .64
Step 7: Binding the extension interface to the impl .65
Running the first test .65

Summary of best practices .65

8 Creating context APIs .67
Overview of LOB-agnostic context APIs .67
LOB-agnostic context API resources .67

Base configuration resources for LOB-agnostic business contexts .68
Creating new context APIs .68

Creating a new context API .69
Create a new context API .70
Step 1: Creating scenarios that use new steps .70
Step 2: Creating the step method .71
Step 3: Creating the context API interface .72
Step 4: Creating the context API impl .73
Step 5: Modifying ContextFactory .73
Step 6: Modifying ContextFactoryImpl .74
Step 7: Binding the new interface to the impl .74
Running the first test .74

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

4

Summary of best practices .74

9 The Line/Job Context API .77
Overview of LOB-specific business contexts .77
Structure of the Line/Job Context API .78

The line of business dimension. .78
The job dimension .78
The line/job impls. .79
The structure for submissions. .80

Resources associated with the Line/Job Context API .81
Resources directly associated with the Line/Job Context API. .81
Resources indirectly associated with the Line/Job Context API .82

Adding a new line of business .83

10 Testing submissions on a new line of business .85
Summary of the Line/Job Context API .85
Adding a new line of business for submission testing. .86

Add a line of business for submission .86
Step 1: Creating submission scenarios that use new steps .87
Step 2: Modifying ProductCode .87
Step 3: Modifying TagInfoProcessor .87
Step 4: Creating new step methods .88
Step 5: Creating an interface/impl pair for the new LOB .88
Step 6: Creating a SubmissionContextImplBase for the new LOB .89
Step 7: Creating the new line/job impl for quick quotes. .90
Step 8: Creating the new line/job impl for full quotes .91
Step 9: Binding the new impls to the parent interface .92
Running the first test .92

Summary of best practices .92

Part 3
Writing implementation code

11 Working with test data .97
Test data overview. .97

General testing functionality .97
Testing functionality specific to Behavior Testing Framework .97

Data wrappers .98
The datawrapper class .99
Using data wrapper objects .99
Data wrapper objects in the base configuration. 100

The DataSetup class. 100
Mapping impl code to modular steps. 100
The DataSetup hierarchy . 101
Enhancements to the platform builders . 102

Transformers. 102

Part 4
Additional topics

12 Behavior Testing Framework for ContactManager . 107
Installing Behavior Testing Framework for ContactManager. 107

Install Behavior Testing Framework for ContactManager . 107
Verify the Behavior Testing Framework for ContactManager installation 107

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

5

Resolving errors that occur during verification . 109

Part 5
Platform-level testing functionality

13 GUnit Test Framework . 113
Creating a framework test. 113

Core functions of the test framework base classes. 115
Support functions for the test framework . 116
Creating a framework test suite . 120
Running a test suite at the command prompt . 121

14 Using test data builders . 123
Overview of test data builders . 123
Creating objects using test data builders . 124

Declaring the test object variable . 125
Setting object values . 125
Creating the object . 127
Creating multiple test objects from a template object . 128
Creating related objects . 128

15 Creating and extending test data builders . 131
Creating an entity builder . 132

Builder create methods . 132
Creating new builders . 134

Extending an existing builder class . 134
Extending the DataBuilder class . 135
Create and test a builder for a custom entity. 136

16 Gosu PCF tests . 141
Support methods for user interface tests . 141

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

6

Guidewire Documentation

About PolicyCenter documentation
The following table lists the documents in PolicyCenter documentation:

Document Purpose

InsuranceSuite Guide If you are new to Guidewire InsuranceSuite applications, read the InsuranceSuite Guide for
information on the architecture of Guidewire InsuranceSuite and application integrations. The
intended readers are everyone who works with Guidewire applications.

Application Guide If you are new to PolicyCenter or want to understand a feature, read the Application Guide. This guide
describes features from a business perspective and provides links to other books as needed. The
intended readers are everyone who works with PolicyCenter.

Upgrade Guide Describes the overall upgrade process, and describes how to upgrade your configuration and
database. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations.

Configuration Upgrade Tools
Guide

Describes the tools and functionality provided by the Guidewire InsuranceSuite Configuration
Upgrade Tools. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations. Visit the Guidewire Community to
access the Configuration Upgrade Tools Guide, which is available for download, separately from the
main documentation set, with the Configuration Upgrade Tools.

Installation Guide Describes how to install PolicyCenter. The intended readers are everyone who installs the application
for development or for production.

System Administration Guide Describes how to manage a PolicyCenter system. The intended readers are system administrators
responsible for managing security, backups, logging, importing user data, or application monitoring.

Configuration Guide The primary reference for configuring initial implementation, data model extensions, and user
interface (PCF) files for PolicyCenter. The intended readers are all IT staff and configuration engineers.

PCF Format Reference Describes PolicyCenter PCF widgets and attributes. The intended readers are configuration engineers.
See the Configuration Guide

Data Dictionary Describes the PolicyCenter data model, including configuration extensions. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Security Dictionary Describes all security permissions, roles, and the relationships among them. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Globalization Guide Describes how to configure PolicyCenter for a global environment. Covers globalization topics such as
global regions, languages, date and number formats, names, currencies, addresses, and phone
numbers. The intended readers are configuration engineers who localize PolicyCenter.

Rules Guide Describes business rule methodology and the rule sets in Guidewire Studio for PolicyCenter. The
intended readers are business analysts who define business processes, as well as programmers who
write business rules in Gosu.

Guidewire Contact Management
Guide

Describes how to configure Guidewire InsuranceSuite applications to integrate with ContactManager
and how to manage client and vendor contacts in a single system of record. The intended readers are
PolicyCenter implementation engineers and ContactManager administrators.

Best Practices Guide A reference of recommended design patterns for data model extensions, user interface, business
rules, and Gosu programming. The intended readers are configuration engineers.

Integration Guide Describes the integration architecture, concepts, and procedures for integrating PolicyCenter with
external systems and extending application behavior with custom programming code. The intended

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

7

Document Purpose
readers are system architects and the integration programmers who write web services code or
plugin code in Gosu or Java.

REST API Client Guide Describes how to use the InsuranceSuite REST API Client to make outbound HTTP calls to internal or
third-party REST services.

Java API Reference Javadoc-style reference of PolicyCenter Java plugin interfaces, entity fields, and other utility classes.
The intended readers are system architects and integration programmers.

Gosu Reference Guide Describes the Gosu programming language. The intended readers are anyone who uses the Gosu
language, including for rules and PCF configuration.

Gosu API Reference Javadoc-style reference of PolicyCenter Gosu classes and properties. The reference can be generated
at any time to reflect the current PolicyCenter configuration. The intended readers are configuration
engineers, system architects, and integration programmers.

ISBTF and GUnit Testing Guide Describes the tools and functionality provided by InsuranceSuite for testing application behavior
during an initial implementation or an upgrade. The guide covers functionality related to Behavior
Testing Framework, GUnit, and Gosu functionality designed specifically for application testing. There
are two sets of intended readers: business analysts who will assist in writing tests that describe the
desired application behavior; and technical developers who will write implementation code that
executes the tests.

Glossary Defines industry terminology and technical terms in Guidewire documentation. The intended readers
are everyone who works with Guidewire applications.

Advanced Product Designer
Guide

Advanced Product Designer is a tool that helps you, a business user, design, simulate, and deploy an
insurance product. The intended readers are business analysts who understand insurance products,
business systems analysts who liaise between business analysts and IT, project managers, and IT who
provides technical expertise in areas such as programming, testing, and databases.

Product Model Guide Describes the PolicyCenter product model. The intended readers are business analysts and
implementation engineers who use PolicyCenter or Product Designer. To customize the product
model, see the Product Designer Guide.

Product Designer Guide Describes how to use Product Designer to configure lines of business. The intended readers are
business analysts and implementation engineers who customize the product model and design new
lines of business.

REST API Framework Describes the Guidewire InsuranceSuite framework that provides the means to define, implement,
and publish REST API contracts. It also describes how the Guidewire REST framework interacts with
JSON and Swagger objects. The intended readers are system architects and integration programmers
who write web services code or plugin code in Gosu or Java.

Conventions in this document
Text style Meaning Examples

italic Indicates a term that is being defined,
added emphasis, and book titles. In
monospace text, italics indicate a variable to
be replaced.

A destination sends messages to an external system.
Navigate to the PolicyCenter installation directory by running the
following command:

cd installDir

bold Highlights important sections of code in
examples.

for (i=0, i<someArray.length(), i++) {
 newArray[i] = someArray[i].getName()
}

narrow bold The name of a user interface element, such
as a button name, a menu item name, or a
tab name.

Click Submit.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

8

Text style Meaning Examples

monospace Code examples, computer output, class and
method names, URLs, parameter names,
string literals, and other objects that might
appear in programming code.

The getName method of the IDoStuff API returns the name of the
object.

monospace italic Variable placeholder text within code
examples, command examples, file paths,
and URLs.

Run the startServer server_name command.
Navigate to http://server_name/index.html.

Support
For assistance, visit the Guidewire Community.
Guidewire customers

https://community.guidewire.com

Guidewire partners
https://partner.guidewire.com

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

9

https://community.guidewire.com
https://partner.guidewire.com

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

10

Part 1

Getting started

Behavior Testing Framework is a Guidewire product that enhances the capabilities of PolicyCenter by providing
resources and an infrastructure so that insurers can implement Behavior-Driven Development.
PolicyCenter provides Behavior Testing framework in a compressed file. You must install the contents of this file
into PolicyCenter.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

chapter 1

Behavior Testing Framework overview

Behavior Testing Framework is a Guidewire product that enhances the capabilities of PolicyCenter by providing
resources and an infrastructure so that insurers can implement Behavior-Driven Development (BDD).
Behavior Testing Framework extends the GUnit testing framework in the base application. The GUnit testing
framework provides:
• An environment that supports writing and running the tests for your Gosu configuration code.
• The ability to run individual tests and complete test suites within Guidewire Studio.
• The ability to run test suites at a command prompt or in a continuous integration work flow.

Behavior Testing Framework provides the following additional functionality:
• The ability to describing software behavior in natural language that is directly tied to implementation code.
• A framework that makes it possible to share implementation code common to broad business contexts, as well as

isolate code specific to more narrow business contexts.
• The ability to test pages and screens using the native page model.

Behavior Testing Framework provides both the testing framework and examples of how to use the framework.

Goals of Behavior Testing Framework
Behavior Testing Framework was designed to support several goals.

Support for Behavior-Driven Development

Behavior-Driven Development (BDD) is a software development approach where the focus is placed on describing
user behavior and verifying that the software produces the expected results from that behavior. Ideally, you write
these descriptions of behavior before the software is developed, as well as tests that verify the behavior. Initially, the
tests will fail because the functionality has not yet been implemented. As functionality is developed, the tests pass.
This ensures the software supports the desired behaviors.
Behavior-Driven Development emphasizes collaboration between business resources and technical resources. A
fundamental belief is that software development is more effective and more efficient when the stakeholders and the
agile team discuss requirements using a common language.
• Analysts contribute by analyzing their business and communicating the business behavior expected from the

application.
• Software developers and QA developers contribute by clarifying the technical implementation on the user

behavior and implementing the step definitions
In Behavior-Driven Development, software behaviors are written as a set of scenarios. Each scenario describes user
behavior and its impact on the state of the system.

Behavior Testing Framework overview 13

Behavior Testing Framework supports this goal in the context of InsuranceSuite by providing an integration with
Cucumber and enhancing the GUnit framework, a tool that reads executable specifications written in natural
language.

Separation of business details from implementation details

Some testing frameworks use a single layer of resources to define testing requirements. This approach tends to be
highly technical. As a result, business experts are forced to play a secondary role in testing development because
they do not usually express business requirements in a highly technical manner.
Behavior Testing Framework uses multiple layers of resources. This includes:
• The business layer, which consists primarily of scenarios. Scenarios are written in Gherkin, an executable

language that reads like natural language. Both business experts and technical experts can write scenarios in
Gherkin.

• The context implementation layer, which consists primarily of Gosu classes that specify implementation details
in a highly technical manner.

• The mapping layer, which connects the business layer and the context implementation layer, and provides the
freedom to modify resources in one layer without needing to make changes to resources in the other layer.

Sharing and isolating implementations

In some circumstances, different scenarios must perform a given action in the same way. For example, consider the
action of assigning a user to a group. This action is always performed in the same way, regardless of the scenario
that executes it.
In other circumstances, different scenarios must perform a given action in different ways. For example, consider the
action of adding an optional coverage during a submission. The possible values vary based on the policy's type of
product. In other words, this action is performed in different ways, depending on the scenario that executes it.
Behavior Testing Framework is designed to support both of these use cases. When a test step behaves the same way
in all circumstances, all scenarios using this test step execute the same implementation code. When a test step must
behave differently based on the scenario, multiple implementations exist, and Behavior Testing Framework selects
the correct implementation for each scenario.

Provide for easy extensibility

Behavior Testing Framework comes with a set of business scenarios and implementations to test these scenarios.
These resources provide examples for how to write and implement scenarios. They are based on the base
configuration of PolicyCenter, and all scenarios will pass when run against the base configuration.
However, during an implementation of PolicyCenter, insurers configure the application to meet their business needs.
Behavior Testing Framework can similarly be modified to test an insurer's configurations.
• New scenarios can be added.
• New implementation resources can be added.
• Existing implementation resources can be extended.
• New implementation strategies can be added, such as conducting tests with REST APIs.

Technologies used in Behavior Testing Framework
The bulk of the technology used by Behavior Testing Framework is identical to that of PolicyCenter . Behavior
Testing Framework uses Gosu classes and interfaces created through the Guidewire Studio IDE.
Behavior Testing Framework also uses the following technologies.

Cucumber and Gherkin

Cucumber is an open-source software testing tool that is capable of running automated acceptance tests. Cucumber
is designed to run tests created in a behavior-driven development environment. Studio includes a plugin to support
Cucumber.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

14 chapter 1: Behavior Testing Framework overview

Gherkin is a language used by Cucumber to define tests. It uses natural language so that test writing can be a
collaborative effort between business experts and technical experts.
For more information, refer to the Cucumber Documentation at https://docs.cucumber.io/guides/.

Google Guice

To share and isolate implementations appropriately, Behavior Testing Framework uses dependency injection.
Dependency injection is a software design approach in which one object provides the dependencies of another
object. The act of passing the dependency object into another object is referred to as injecting. The primary goal of
dependency injection is to isolate objects so that no dependent object needs to be changed solely because an object
that it depends on is being changed. This approach adheres to the Open/Closed principle of object-oriented
programming.
Cucumber supports several dependency injection frameworks. Behavior Testing Framework uses Google Guice.
Google Guice (pronounced like "juice") is an open-source Java framework that supports dependency injection.
Dependencies can be injected into dependent objects using the @Inject annotation.
The following is an example of the AdminSteps class. It defines a createUserWithRoleAndSetAsCurrentUser
method, which must identify and execute the correct implementation of createAndSetUserWithRole. The method
is able to do this using an instance of ContextFactory, which has been injected into the class.
class AdminSteps {
 @Inject
 var _contextFactory : ContextFactory

 @Given("^I am a user with the \"([^\"]*)\" role$")
 function createUserWithRoleAndSetAsCurrentUser(roleString: String) {
 _contextFactory.getAdminContext().createAndSetUserWithRole(roleString)
 }

For more information, refer to the Guice Documentation at https://github.com/google/guice.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Behavior Testing Framework overview 15

https://docs.cucumber.io/guides/
https://github.com/google/guice

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

16 chapter 1: Behavior Testing Framework overview

chapter 2

Installing Behavior Testing Framework

Guidewire provides the Behavior Testing Framework extension pack in a compressed file. You must extract the
contents of this compressed file. The following directions refer to the extracted contents as the "extracted directory".

Note: Each release of Behavior Testing Framework supports a specific version of the core application.
You must ensure that the version of Behavior Testing Framework is compatible with your version of
the core application.

To install Behavior Testing Framework for ContactManager, see “Install Behavior Testing Framework for
ContactManager” on page 107.

Install Behavior Testing Framework
About this task

The following instructions are for installing Behavior Testing Framework for PolicyCenter. To install Behavior
Testing Framework for ContactManager, see “Installing Behavior Testing Framework for ContactManager” on
page 107.

Procedure

1. Extract the Behavior Testing Framework distribution file.
• The distribution file is named pc-isbtf.zip.
• The distribution file is located in the core product's isbtf subdirectory.

2. Install the framework files.
a. In the extracted directory, navigate to the framework directory. This directory contains a modules

directory.
b. Merge the modules directory into the PolicyCenter directory.
c. If messages appear that ask whether you want to merge modules and any other directories, select the

option that merges the directory.
3. Enable code generation of the native page model. This lets Behavior Testing Framework interact with PCF

elements and screens.
a. In the PolicyCenter directory, open the gradle.properties file in a text editor.
b. Locate the isPcfTestCodegenEnabled property and set its value to true.
c. Save and close the file.

4. Add a command for running a Cucumber test suite to the build.gradle file.
Installing Behavior Testing Framework 17

a. In the PolicyCenter directory, navigate to the modules/configuration directory.
b. Open both the build.gradle file and the build.gradle_isbtf file in a text editor.
c. In the build.gradle_isbtf file, locate the line that contains the following text:

/** ISBTF: ONLY MERGE THE LINE BELOW */

d. Copy the line between the /** ISBTF: ONLY MERGE THE LINE BELOW */ and /** ISBTF: ONLY MERGE
THE LINE ABOVE */ lines.

e. Paste the copied line at the end of the build.gradle file.
f. Save and close the build.gradle file.
g. Close the build.gradle_isbtf file.

5. Some files in Behavior Testing Framework refer to generated PCFs. If the generated files do not exist, the
application will not start. To ensure the files exist.
a. Open Guidewire Studio.
b. Click Codegen→Generate Page Configuration Classes. When the class generation is complete, Studio

shows a "Page configuration codegen done..." message in the lower left corner.

Install the behavior testing suite
Procedure

1. In the extracted directory you created in “Install Behavior Testing Framework” on page 17, navigate to the
behavior directory. This directory contains a modules directory.

2. Merge the modules directory to the PolicyCenter directory.
3. If messages appear that ask whether you want to merge modules or any other directories, select the option that

merges the directory.
4. If other messages that ask whether you want to replace existing files appear, select the options that replace the

existing files.

Install the behavior testing example
Procedure

1. In the extracted directory that you created in “Install Behavior Testing Framework” on page 17, navigate to the
example directory. This directory contains a modules directory.

2. Merge the modules directory to the PolicyCenter directory.
3. If messages appear that ask whether you want to merge the modules and any other directories, select the

option that merges the directory.
4. If other messages that ask whether you want to replace existing files appear, select the options that replace the

existing files.

Verify the Behavior Testing Framework installation
About this task

Check that you installed the framework correctly. You can do this by: (1) verifying that the appropriate directories
and files have been added, (2) running a base configuration feature file, and (3) running a base configuration suite.
The scenarios provided in Behavior Testing Framework will pass when executed against a stand-alone base
configuration instance of PolicyCenter. If the instance has been integrated with other Guidewire applications or
configured, some tests may not pass.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

18 chapter 2: Installing Behavior Testing Framework

Procedure

1. Open Guidewire Studio.
2. Optionally verify that the following directories and files exist:

• In configuration/gsrc/gw/api/test, a pcSmokeTestClassBase file.
• A configuration/gsrc/gw/smoketest.pl directory.
• A configuration/gtest/gw/cucumber directory.
• A configuration/gtest/gw/enhancement directory.
• In configuration/gtest/gw/suites, a pcExampleSmokeSuite file.
• A configuration/gtest/gw/smoketest directory.
• In configuration/res/cucumber, multiple subfolders that contain Cucumber feature files.

3. If you are installing Behavior Testing Framework on a configured instance of PolicyCenter, you may see
compile errors in Studio. These errors are caused by impl methods in Behavior Testing Framework that
reference PCF elements in the base configuration that have been either modified or removed in the configured
instance. Resolve these compile issues before proceeding to the next step. You can resolve each issue by doing
the following:
a. Identify the impl method that is causing the compile error.
b. Comment out the code in the method.
c. Add a line of code that throws an UnsupportedOperationException. For example: throw new

UnsupportedOperationException("Not yet implemented")

If you resolve the issues in this way, then all code will compile. When you run a scenario that references one
of these impl methods, the scenario will fail due to the UnsupportedOperationException.

4. Test a base configuration feature file.
The feature file assumes that PolicyCenter has been installed in stand-alone mode and has not been
configured. When run on a stand-alone base configuration of PolicyCenter, all scenarios in the feature file will
pass. If PolicyCenter has been integrated with other Guidewire applications or configured, one or more
scenarios may fail.
a. Navigate to configuration/res/cucumber/account.
b. Right-click the AccountManagement_Agent.feature file, and then click Run 'Feature:

AccountManagement_Agent'.
Studio opens a Run Feature <FeatureName> tab. The left pane contains icons that identify the tests that pass or
fail. The right pane contains a console with the server output during testing.

5. Test a base configuration suite.
A suite is a collection of feature files that are executed together. The suite assumes that PolicyCenter has not
been configured. When run on a base configuration of PolicyCenter, all scenarios in the suite will pass. If
PolicyCenter has been configured, one or more scenarios may fail.
There is a known issue with Behavior Testing Framework that prevents a test suite from running if there is a
running test server. As a workaround, if there is a running test server, stop it before executing the following
steps.
a. Navigate to configuration/gtest/gw/suites.
b. Right-click the PCBehaviorCucumberSuite file, and then click Run 'PCBehaviorCucumberSuite'.
Studio opens a Run <SuiteName> tab. The left pane contains icons that identify the tests that pass or fail. The
right pane contains a console with the server output during testing.

Resolving errors that occur during verification
Errors that occur when executing a test suite

The following table lists errors that you might see when executing a suite, as well as possible causes and recommend
fixes.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Installing Behavior Testing Framework 19

Error message Possible cause Suggested fix

Studio throws an ArrayIndexOutOfBounds
exception

The test server might already be
running.

Stop the test server before executing
the file.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

20 chapter 2: Installing Behavior Testing Framework

chapter 3

Behavior Testing Framework
architecture

This topic provides an overview of the Behavior Testing Framework architecture. It provides a high-level
understanding of scenarios, step definitions, Context Factory, the context APIs, and the way in which these
components interact.

Behavior Testing Framework layers
Behavior Testing Framework consist of a set of resources that can be grouped into three layers:

The business layer
The business layer is the set of resources that define the behaviors to be tested. The fundamental building blocks of
this layer are the scenarios. A scenario is a description of user or system behavior that can be tested. Scenarios are
written in the Gherkin language. They typically have three sections:
• The Given section defines pre-conditions.
• The When section defines the actions to test.
• The Then section defines the expected outcome.

The following is an example of a test written in Gherkin.
Behavior Testing Framework architecture 21

Scenario: Set a user's email address
 Given I am a user with the "Underwriting Supervisor" role
 When I set my email address to "ssmith@customer.com"
 Then my primary email address should be "ssmith@customer.com"

Other than the scenario name, every line in a scenario is referred to as a step. A step is a reusable description of one
of the following:
• A pre-condition that describes the environment (stated as a Given), or
• An action to test within that environment (stated as a When), or
• An expected outcome of the action (stated as a Then).

Any given step can be used in multiple scenarios. This gives you the ability to use the same natural language
description in multiple scenarios, even if the underlying implementations must be different.
Every step maps to a step method. A step method is a method that locates and executes the correct implementation
code for the associated scenario steps.
Scenarios are typically grouped together into features. A feature is a Cucumber file that contains a set of related
scenarios. Features typically contain scenarios for a single type of user that test a single aspect of application
behavior. Features can also contain a Background, which is a set of pre-condition steps that apply to all scenarios in
the feature. The same step method can be used in multiple scenarios, even when those scenarios are in different
features.

Note: The remainder of this documentation refers to Cucumber features as "feature files". This is to
prevent confusion with the more common use of the term "feature" to refer to application behavior,
such as the "assignment feature".

Scenarios can be executed individually from Studio. Scenarios can also be grouped and run together using a testing
suite. For more information on executing scenarios, see “Running scenarios” on page 41.
The following diagram depicts an example of resources in the business layer. Specifically, this example is three
separate feature files that all use the same step method: Given I am a user with the "X" role. All three step
methods point to a single resource in the mapping layer.

For more information on writing scenarios and creating feature files, see “Writing scenarios” on page 31.

The mapping layer
The mapping layer is the set of resources that map the scenarios to the implementation code that executes them. The
resources in this layer are sometimes referred to as glue code. (Glue code is an programming term code that exists to
connect different sets of code that are otherwise incompatible.)

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

22 chapter 3: Behavior Testing Framework architecture

The fundamental building blocks of this layer are the step methods, Context Factory, and the
RemoteSmokeTestHelperModule class.
A step method is a Gosu method that maps a scenario step to its implementation. Step methods are grouped together
in step files.
Context Factory is the name used to refer to two Gosu classes: ContextFactory (an interface) and
ContextFactoryImpl (an implementation of the interface). All of the implementations needed for testing (such as
implementations for admin testing, activity testing, and so on) are injected into Context Factory. Context Factory is
injected into every step file. In this way, Context Factory acts as a dependency object that provides every step
definition with the ability to identify and call the appropriate implementation.
By itself, Context Factory does not have any information on which impl class to go to find the implementation for a
particular method. The logic that identifies this is primarily stored in the RemoteSmokeTestHelperModule. This class
consists of a set of custom bindings that bind every interface to the appropriate impl. For example,
RemoteSmokeTestHelperModule binds the AdminContext interface to AdminContextImpl. Whenever a step
method needs to access a method in a specific impl, it requests an instance of the interface and then accesses the
method through the binding between the interface and the impl.
The following diagram depicts an example of resources in the mapping layer. Specifically, this example is the
AdminSteps file, which provides the step method for the Given I am a user with the "X" role scenario step.
The step file injects Context Factory, which provides access to the class that declares the implementation code.

For more information on writing step methods, see “Creating step methods” on page 49. For more information on
Context Factory, see “Extending context APIs” on page 57.

The context implementation layer
The context implementation layer is the set of resources that contain the implementation code. The fundamental
building blocks of this layer are the context APIs.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Behavior Testing Framework architecture 23

Context APIs
A context API is a set of resources that provide the implementations to test a given business context. For example:
• AdminContext contains the resources for scenarios that test administration behavior.
• ActivityContext contains the resources for scenarios that test activity behavior.

A context API consists of one or more pairs of classes. Each pair consists of an interface (which defines testing
method signatures) and an impl (which implements those methods). The impl always implements the corresponding
interface. The following diagram illustrates two context APIs.

Injecting context APIs into Context Factory
All of the context APIs are injected into Context Factory. This gives the mapping layer access to all of the
implementation code so that it can select the correct implementation method for each step method. This is illustrated
in the following diagram.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

24 chapter 3: Behavior Testing Framework architecture

Finally, RemoteSmokeTestHelperModule binds the context API interfaces to their impls so that the correct impl can
be provided to each step method. This is illustrated in the following diagram.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Behavior Testing Framework architecture 25

Summary of the resources in each layer
The following diagram depicts an example of the resources used in all three layers to enable the Given I am a
user with the "X" role step method. Specifically:
1. Several scenarios reference the step method named Given I am a user with the "X" role.
2. The definition for this step method is defined in the AdminSteps class. This class injects ContextFactory,

which means it has access to all the implementations known to ContextFactory. The step definition maps the
step method to the createUserWithRoleAndSetAsCurrentUser method from the AdminContext interface.

3. ContextFactor has every context API injected into it. This allows it to give every step class access to every
implementation.

4. Implementation details are stored in context APIs. Every context API is comprised of interface/impl pairs. The
implementation code is stored in the impls.

5. RemoteSmokeTestHelperModule binds every context API interface to its impl. This provides the logic that
allows Context Factory to select the correct impl for every context and method referenced by a step method
definition.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

26 chapter 3: Behavior Testing Framework architecture

For more information on extending base configuration context APIs, see “Extending context APIs” on page 57.
For more information on creating new context APIs, see “Creating context APIs” on page 67.

LOB-specific context APIs
All of the previous examples of context APIs have been LOB-agnostic. An LOB-agnostic context API is a context
API for a business context that functions the same way, regardless of the line of business of the associated policy.
An LOB-agnostic context API has a single interface/impl pair.
Some business contexts have testing requirements that vary based on the line of business and based on job. Within
these business contexts, there is sometimes a need to share implementation code, and sometimes a need to isolate it.
For example:
• A method to add line level coverages is needed for all policy-related tests, but:

◦ A method to add drivers is needed only for personal auto policy tests.
◦ A method to add covered workers is needed only for workers' compensation policy tests.

• A method to quote a job is needed for all job-related tests, but:
◦ A method to start a renewal is needed only for renewal tests.
◦ A method to apply preemption changes is needed only for policy change tests.

To ensure that there is a way to share code when needed and isolate code when needed, these business contexts
conduct their tests using LOB-specific context APIs. In PolicyCenter, there is one LOB-specific context API, the
LOB/Job context API. It has a multi-dimensional, multi-level structure. This structure provides a way to share code
as needed and isolate code as needed.
There are two dimensions to the LOB/Job API: one for Line of Business and one for Job.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Behavior Testing Framework architecture 27

The line of business dimension has a top-level, generic LineContext level and multiple line-specific child levels.
Methods that are required for every line (such as addLineLevelCoverage) are declared at the top level. Methods
that are specific to a given line are declared at the child levels. For example:
• addCoveredEmployees is declared at the workers' compensation level.
• addDriver is declared at the personal auto level.

Similarly, the job dimension has a top-level, generic JobContext level and multiple job-specific child levels.
Methods that are required for every job (such as quote) are declared at the top level. Methods that are specific to a
given job are declared at the child levels. For example:
• startRenewal is declared at the Renewal level.
• applyPreemptionChanges is declared at the PolicyChange level.

Finally, there is an impl for every line/job combination that requires testing. This impl combines methods from the
appropriate line of business level and the appropriate job level. For example, the following diagram depicts an
example of PAPolicyChangeContextImpl. This impl combines methods from the line-specific PAContext and the
job-specific PolicyChangeImpl.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

28 chapter 3: Behavior Testing Framework architecture

Like Java, Gosu does not support multiple inheritance. To create a Line/JobContextImpl class that inherits
information from multiple, non-related parent classes:
• The job dimension is considered the "primary" dimension. Line/JobContextImpl class extends the appropriate

Line/JobContextImplBase class and inherits its methods.
• The methods from the appropriate <Line>ContextImpl are made available to the Line/JobContextImpl class

through the use of a delegate named _lineContextDelegate.
For more information on the LOB-specific context API structure, see “The Line/Job Context API” on page 77.
LOB-specific testing also makes use of tags and a TagInfoProcessor class.
• Every feature file that has LOB-specific or job-specific scenarios starts with an LOB tag followed by a job tag,

such as @personal_auto @policy_change.
• TagInfoProcessor contains the code that selects the policy type and job type during scenario testing based on

the tags in the feature file.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Behavior Testing Framework architecture 29

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

30 chapter 3: Behavior Testing Framework architecture

chapter 4

Writing scenarios

Behavior Testing Framework consist of a set of resources that can be grouped into three layers. The first layer is the
business layer. It consists of a set of resources that define the behaviors to be tested.
The fundamental building blocks of this layer are the scenarios. This topic describes the structure of a scenario, the
way that they are grouped into feature files, and recommended best practices for how to design and write them.

Scenarios overview
Within the context of Behavior Testing Framework, a scenario is a description of a user or system behavior that can
be tested. Scenarios typically have three sections:
• A Given section, which describes conditions that exist before the behavior is executed.
• A When section, which describes the behavior to be executed.
• A Then section, which describes the outcome expected from the behavior.

Scenarios are written in the Gherkin language. Gherkin is designed to enhance collaboration between business
experts and technical experts by allowing scenarios to be written in natural language. Scenarios can be written
collaboratively by a group of business analysts, technical consultants, and QA developers. After they have been
written, the technical consultants can create Gosu methods and implementation code to execute the scenarios.
The following is a scenario written in Gherkin. The structure of Gherkin scenarios is discussed in detail later in this
topic.
 Scenario: Set a user's email address
 Given I am the supervisor of "Chris Jones"
 When I set the user's email address to "cjones@customer.com"
 Then the user's primary email address should be "cjones@customer.com"

Guidewire recommends that each scenario focus on the behavior of a single persona. You may also want to test
behaviors that are executed by the system, such as the execution and outcome of a batch process. For these tests, you
may want to use a persona of "system".
Scenarios are grouped together in feature files. Behavior Testing Framework comes with a set of base configuration
feature files. You can view the scenarios in them from Studio by navigating to configuration/res/cucumber. If
you do not have access to Studio, you can open them using a text editor. The files are located in subdirectories of
modules/configuration/res/cucumber.

Writing scenarios 31

Scenario structure
A typical scenario has the following components:
• Name
• Given
• When
• Then

Scenario names
Every scenario has a name. For example:
Scenario: Issue a bound Personal Auto policy

Certain characters cannot be used in a scenario name because they prevent Studio from being able to correct parse
the feature file. This includes the following ten characters:
= & () [] < > / \

If a scenario name includes one of the characters, Behavior Testing Framework throws the following exception
when trying to run the scenario: IllegalStateException: Remote Cucumber invocation: Could not find single
matching Scenario/Step combination.
If necessary, use alphanumeric alternates for these characters, such as the word "equals" for "=".

Scenario steps overview
Scenarios are written as a series of steps. A step is a description of either a pre-condition that is true before the
behavior is executed, the behavior to execute, or the outcome that is expected from the behavior.
Steps are intended to be reusable. You can use the exact same step in multiple scenarios when those scenarios
require the same pre-condition, execute the same action, or expect the same outcome. For example, consider the
following step:
Given an activity
And the activity's priority is "Urgent"

These steps can be used in any scenario in which one of the pre-conditions is that there is an urgent activity.

Steps with parameters

Some steps use parameters, which appear as text between quotation marks. These steps have increased usability
because they combine multiple descriptions that differ only by a single value. For example:
Given an Personal Auto submission
And the job status is "Quoted"

In this example, "the job status is status" is a step that uses a parameter of status.
There are also steps that do not use parameters. These steps provide a single description that does not vary. For
example:
Given a Personal Auto submission
And the submission is bound

Step methods

Every step maps to a step method. A step method is a method written in Gosu that identifies the implementation
code that corresponds to the step. Step methods are part of the second layer of Behavior Testing Framework, the
mapping layer. (Step methods are also referred to as the "glue code" because they glue the behavior descriptions to
the implementation code.)

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

32 chapter 4: Writing scenarios

Given, When, and Then steps
Steps in a scenario are grouped into one sections: Given, When, and Then. Each section starts with a keyword
(Given, When, or Then) and a step. If multiple steps are needed for the section, the subsequent steps start with the
keyword And.

Given steps

Given steps sets up the state of the system for this scenario before any behavior is executed. For example:
Given a Personal Auto submission
And the job status is "Quoted"

When steps

When steps describe the behavior to execute. For example:
When I apply the pending changes to the unbound renewal
And I recall "Renewal term" as the current job

Then steps

Then steps describe the outcome expected as a result of the behavior. For example:
Then the submission status should be "Bound"
And the status of the contingency is "Pending"

Data tables
A data table is a set of values for a step that are specified in a rows-and-columns format. Data tables make it easier
to specify multiple values for a single step where it would not be practical to use parameters.
A data table can optionally have a set of headers in the first row or in the first column.
• If the first row is a header row, then each row of the table is considered a single record of data.
• If the first column is a header column, then each column of the table is considered a single record of data.

For example, consider the following:
When I create a note with the following:
Topic	Pre-renewal direction
Subject	My Subject
Security Level	Unrestricted
Text	Refer to customer service representative

In this example, the When step specifies that a note will be created. The note has four fields, and a value is specified
for each field.

Feature file overview
A feature file is a Cucumber file that contains a set of related scenarios for a single set of behaviors executed by a
single type of persona.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Writing scenarios 33

Note: Within the context of Cucumber, the term used to describe a group of scenarios is a "feature".
This documentation refers to them as "feature files". This is to prevent confusion with the more
common use of the term "feature" to refer to application behavior, such as the "assignment feature".

Feature file structure
Feature files are comprised of the following elements. Note that most elements appear in most files, but some
elements may not be needed for every feature or scenario:
• One or more optional categorization tags
• Feature name
• Feature description
• Background
• One or more scenarios

The examples in the following sections come from different feature files in the base configuration.

File-level information

Guidewire recommends limiting each feature so that it has scenarios for only a single persona.

Tags

A tag is a text string that identifies the purpose or category of a feature file. Tags have two uses:
• A test suite is a collection of feature files that are executed at the same time. You can use tags to help define the

scope of a test suite.
• If a feature file has scenarios that are specific to a given line of business, you must use tags to identify the line of

business.
A tag must start with an @, but it can be followed by any text. For example:
@personal_auto

A feature file can have any number of tags. Each tag must be separate by a space. For example:
@personal_auto @issuance

Feature name and description

The feature file starts with the feature name and a brief description. Guidewire recommends this information be
formatted as:
As a <persona/system>
I want to <action>

For example:
Feature: Activity

 As an agent,
 I want to create a new activity or manage an activity assigned to me on the policy.

Background

The background is a set of steps that describe the pre-conditions for all scenarios in the feature file. Background
steps are executed before each scenario in addition to each scenario's Given steps. The purpose of the background is
to prevent repetition of the same requirements in every scenario, such as the relevant persona.
Every feature file can have only one background. The background is declared before the first scenario.
For example:
Background:
 Given I am a user with the "Producer" role

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

34 chapter 4: Writing scenarios

 And today's date is "07/01/2018"
 And an in-force Personal Auto policy

Attributes available throughout a feature file
The following elements can be used multiple times in a feature file.

Comments

Feature files can have comments. In Gherkin, a comment is any line that starts with a #. Comments are ignored when
executing a feature file. Comments can be used to provide additional clarification about why a scenario was written
in a given way.
For example:
For these tests to succeed, multicurrency must be enabled.

Scenario outlines

A scenario tests a single behavior and has a single outcome. However, there can be circumstances where a set of
scenarios have nearly identical behaviors and nearly identical outcomes. Each scenario may vary by only a single
value.
A scenario outline is a Gherkin feature that captures multiple, nearly identical scenarios into a single set of steps. A
scenario outline is always followed by an Examples table. This table defines the different values to use for each
execution of the outline.
For example, consider the following scenario outlines:
Scenario Outline: Add coverages without terms to a submission
 Given a Personal Auto submission
 And the job status is "Draft"
 When I add the coverage "<coverage>" line-level coverage
 Then the "<coverage>" line-level coverage should exist

 Examples:
 | coverage |
 | Medical Payments |
 | Underinsured Motorist - Property Damage |
 | Mexico Coverage - Limited |

This scenario outline defines three separate scenarios. All three scenarios involve adding a line-level coverage to a
submission. They differ only in which coverage is being added.
• The first iteration of this scenario outline will test adding the Medical Payments coverage.
• The second iteration of this scenario outline will test adding the Underinsured Motorist - Property Damage

coverage.
• The third iteration of this scenario outline will test adding the Mexico Coverage - Limited coverage.

Note the following syntax conventions and restrictions for scenario outlines:
• A scenario outline starts with the text "Scenario Outline:", not "Scenario:".
• When a value in a step comes from the Examples table, the value must be written as "<header>", where:

◦ header is the label at the top of the appropriate Examples table column, and
◦ header is delimited by a < and a >.

• The values must use only alphanumeric characters. They cannot include special characters such as the slash (/)
character.

Best practices for scenario design
When designing scenarios and features, Guidewire recommends that you adopt the following best practices.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Writing scenarios 35

Conduct scenario grooming meetings
A scenario grooming meeting is a meeting in which business people and technical people collaboratively define the
required scenarios. The goal of each meeting is to review a set of scenarios to ensure that there is a common
understanding of what each scenario is testing and whether there is enough information to develop it.
If you are implementing Behavior Testing Framework for an implementation that is at or near inception, you can
conduct scenario grooming as part of your user story grooming meetings. If the implementation is already
significantly complete, then it may make more sense to have meetings devoted to scenario grooming.
Guidewire recommends that insurers design scenarios in a series of scenario groom meetings.
• Each meeting includes at least one business analyst, one developer, and one QA analyst. This mix of people helps

ensure that the multiple perspectives of the problem are discussed, including the business view, technical
limitations, and the aspects that require testing the most.

• At the beginning of the implementation, business analysts write scenario descriptions using a standard template.
The following section contains an example template. As the implementation progresses, business analysts can
switch to writing scenario descriptions directly in Gherkin.

• By the end of the meeting, all participants have a clear understanding of the goal of each scenario.
For additional information on problems that can occur with too little cross-team collaboration, refer to the anti-
patterns section of the Cucumber documentation.

Include both narrow and end-to-end tests
Across an entire implementation, there is typically a need to have tests that are narrow in focus as well as tests that
cover broad end-to-end functionality. The general guideline is:
• If you are testing a specific unit of functionality, such as form inference during a submission, write a scenario

with a narrow scope that tests the specific functionality only.
• If you are testing a user's journey through a series of screens or steps in a wizard, write a scenario with a broad

scope that tests the flow end-to-end.
The best practice is to write a combination of tests with narrow scope and broad scope. The two extremes
compliment each other. Narrow tests ensure the several small pieces of functionality work as intended, and they can
be run quickly. On the other hand, end-to-end tests take longer to run, but they are useful to make sure that all the
small pieces of functionality work as intended when they are combined together in a single user flow.

Multiple Then sections

All scenarios are limited to a single Given section.
Scenarios with a narrow scope typically have a single When section followed by a single Then section.
An end-to-end test may have multiple When sections, each followed by its own Then section. This structure is used
to help define the state the system should be at important points during the end-to-end flow.

Best practices for scenario language
When writing scenarios and features, Guidewire recommends that you adopt the following best practices.

Title

• Use a short label that provides a high-level description.
• Avoid using CamelCase words without spaces in the title. For example, "Customer Service Rep" is preferred to

"CustomerServiceRep".

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

36 chapter 4: Writing scenarios

Description

• Put the description at the top of the file, immediately after the feature name.
• Format the description using the following template:

◦ As a (role or persona)
◦ I want to (feature)

This approach helps to provide clarity on the user's identity, the reason for having the feature, and the feature's
business value.
Limit each feature file to one persona. If the same behavior must be tested for multiple persons, create separate
feature files for each persona. In this case, name each file feature_persona.feature. For example,
RegionalFormat_CSR.feature.

Background

• Provide context and incidental details for the scenario.
• Write it so that it is common to most or all of the scenarios in the feature.
• Make it as short as possible.
• Limit each feature to only one background section.

Backgrounds ought to be used with caution. Keep in mind that that anyone reading the scenario must remember that
there is background information at the beginning of the feature file that complements each scenario. Avoid moving
information from scenario steps into the background if this makes the background less readable. It is preferable to
have lines repeated in multiple scenarios than it is to have an unreadable background.

Scenario

• Every scenario either:
◦ Tests one and only one behavior, or
◦ Is an end-to-end test that covers an entire workflow

• Write and capitalize terms as they appear in the user interface. For example, refer to an activity's priority as
"Low", "Normal", "High", or "Urgent".

• If a given term does not appear consistently in the user interface:
◦ Use the version that best matches the industry standard, or
◦ Use the version that best matches the section of the user interface that is being tested, or
◦ Use the version that appears most often in the user interface

• Avoid making references to specific user interface controls. Focus on behaviors (such as "When I complete the
activity") as opposed to user interface elements (such as "When I click the Complete button").

Scenario title

• Use short and objective descriptions that identify the general behavior.
• Avoid repeating the primary persona, as this already appears in the feature description.

◦ However, if the action performed in a scenario requires a persona in addition to the one mentioned in the
feature description, then it may be necessary to repeat the primary persona. For example, a scenario that tests a
customer service representative behavior after supervisor approval has been granted may require explicit
mention of the customer service representative.

• Avoid using Gherkin keywords, such as "given", "when", and "then".
• Avoid using words such as "verify", "assert", or "should". The scenario is testing a behavior, and therefore these

types of words are redundant.

Given steps

• Use affirmative statements to represent the initial state or precondition. For example, do this:

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Writing scenarios 37

Given an activity
And the activity's priority is "Urgent"

• Avoid the redundant phrases "there is", "there are", or "already". For example, avoid this:
Given there is already an activity

• Avoid using actions or talking about user interactions with the system. For example, avoid this:
Given an activity
And I reassign it to the "supervisor"

Do this instead:
Given an activity
And the activity has been reassigned to the "supervisor"

When steps

• Use an action verb
• Use the present tense
• Use active voice to clarify the person is the actor
• Use the first person pronoun ("I") as needed to add clarity. For example, do this:

Given an activity
And the activity's priority is not "Urgent"
When I set the priority to "Urgent"

Then steps

• Use "should" to make the Then step more assertive. For example:
Then the activity's status is "Complete"

Instead, do this:
Then the activity's status should be "Complete"

Evaluate the usability of the base configuration scenarios
Some of the base configuration scenarios may be applicable to your implementation. You can use these scenarios to
test product behavior without modification.
Other base configuration scenarios may not be applicable to your implementation exactly as coded. There are two
possible reasons for this:
• The scenario will pass in your implementation, but its conditions are not rigorous enough to constitute a

meaningful test.
• The scenario will fail in your implementation because the behavior to be tested has been altered in your

implementation or the scenario’s data is not applicable.
Guidewire recommends the following for base configuration tests that are not applicable to your implementation:
• If the scenario will pass, but its conditions are not rigorous enough to constitute a meaningful test:

◦ Keep the scenario test as is in the original file, as this minimizes work during upgrade.
◦ Create a new scenario with sufficient rigor in a new file.

• If the scenario will fail, modify the original file and remove the scenario. This creates a more reliable
environment for QA because all scenarios are ultimately expected to pass. Modifying the original file will cause
a conflict during any future upgrade. Therefore, Guidewire recommends you also keep records of modifications
made to base configuration scenarios so that future upgrades can rapidly identify the source of any conflict.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

38 chapter 4: Writing scenarios

Working with feature files

Feature file location
Within the Guidewire application, feature files are stored in the subdirectories of modules/configuration/res/
cucumber. They can be accessed from Studio by navigating to configuration/res/cucumber.
If a new file contains modification related to an existing file, Guidewire recommends that you either:
• Store each new file in the same folder as the original file, or
• Store all new files in a new folder, such as res/cucumber/example_insurance.

Feature file names
To ensure that your customizations do not create any upgrade conflicts, Guidewire recommends that you declare
new scenarios in new feature files.

Prefix

If a file pertains to a specific line of business, Guidewire recommends starting the file name with the LOB code. For
example: PA_Activities_CSR_Ext.feature

Suffix

Guidewire recommends including the feature's persona in the file name. For example:
PA_Activities_CSR_Ext.feature

Guidewire recommends ending the file name with an _Ext suffix. For example: PA_Activities_CSR_Ext.feature

File extension

All feature files must have the .feature file extension. For example: PA_Activities_CSR_Ext.feature

Create a feature file

About this task

Drafts of feature files can be created using any type of text editor or word processor. However, to create a functional
feature file, the user must have access to Studio.

Procedure

1. In Studio, navigate to the configuration/res/cucumber directory.
2. If necessary, create a new sub-directory for the feature file.
3. Right-click the appropriate sub-directory and select New→File.
4. In the New File dialog box, name the file and click OK. Guidewire opens the blank feature file.
5. On the first line of the file, optionally add a tag.

• The syntax is: @Tag.
• Tags can be used to narrow the scope of test suites. For more information, see “Running groups of feature

files” on page 43.
6. Specify the feature name.

• The syntax is: "Feature: Feature Name"
7. Provide a description of the feature.
8. Provide the feature background.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Writing scenarios 39

Adding scenarios to a feature file
Once a feature file exists, you can add scenarios to it by entering them after the Background section.
As you start to type the step text, Studio shows a popup that lists all of the defined step methods. As you enter text,
Studio filters the choices in the popup to those that match the entered text. You can use this feature to select defined
step methods. This can help promote reusability by making it easier to identify when there is an existing step with
the desired functionality.
When you enter a step with no defined step method, Studio highlights the step in yellow. When you mouse over the
step, a tooltip appears that starts with "Undefined step reference:".
Step methods are created in step files and require knowledge of Gosu. Business analysts can create feature files
without having all of the associated steps defined. However, before the feature can be executed, the associated steps
must be defined. For more information, see “Creating step methods” on page 49.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

40 chapter 4: Writing scenarios

chapter 5

Running scenarios

The following topic provides information on how Behavior Testing Framework runs scenarios, and how you can
initiate the running of scenarios.

Overview of running scenarios
Every Cucumber scenario describes a behavior that the application is ultimately expected to have. The behavior can
be tested by running the scenario. This produces a test result, which indicates if, under the given pre-conditions, the
behavior resulted in the expected outcome. The test result is either a pass or a fail.
There are several different options for running scenarios.

Which scenarios to run

You can choose to run an individual scenario, a feature file, or a test suite.
A feature file is a Cucumber file that contains a set of related scenarios. Features typically contain scenarios for a
single type of user that test a particular aspect of application behavior.
A test suite is a Gosu class that defines a group of feature files to run at the same time.

How to initiate the testing

Individual scenarios and feature files can be run only through Guidewire Studio. For more information, see
“Running feature files from Studio” on page 43.
Test suites can be run in one of two ways:
• Through Guidewire Studio
• From a command prompt

For more information, see “Running a test suite from Studio” on page 45 and “Running a test suite from a
command prompt” on page 45.

Test servers
Scenarios must be executed on a running server. A server that is used to run scenarios is often referred to as a test
server. Note that there is no flag, setting, or configuration parameter that inherently marks a server as a test server. A
test server is simply a server on which tests are run.

Running scenarios 41

Test server configuration

Test servers are often configured to run with settings that are appropriate for running tests, as opposed to settings
appropriate for a production environment. The following describes some common test server settings.
Test server modes
A server can be started in one of three modes: development, test, and production. In development mode, all
implementation and testing features are enabled. In test mode, all implementation and testing features are disabled,
except for the ability to enable and advance the testing clock. Test mode is designed for testing functionality in a
production-like environment with the one exception of being able to advance the clock to test time-based processes.
In production mode, all implementation and testing features are disabled.
Test servers are typically started in either development mode or test mode.
For more information on server modes, refer to the section on server modes in the System Administration Guide.
Test server database
Test servers are often configured to store the database in memory only. When the server is started, a new database is
created. When the server is stopped, that database is discarded. An "in memory" database has the advantage of
providing a more stable testing environment. The database is always discarded and recreated, which means there is
less chance that a valid test will fail because of the presence of unexpected data from a previous test or from some
other process.
The database-config.xml file specifies different database configurations using the <database> tag. In the base
configuration, test servers are run using the <database> configuration with the env="h2mem" property. This
configuration specifies an H2 server whose database is in memory. Specifically, the jdbc-url property starts with
jdbc:h2:mem:....
Assertions enabled
An assertion is a method that tests to see whether a desired behavior has been correctly executed within an
application. Gosu includes assertions, which are an extension of assertions in Java.
When an assertion is enabled, it checks to see whether a given outcome has occurred. If the outcome has occurred,
the assertion does nothing. If the outcome has not occurred, the assertion throws an error, which can be captured by
a testing framework and included in a report or shown to a user.
By default, assertions are disabled in InsuranceSuite applications. This means that whenever an assertion is reached
during run-time, it does nothing.
Typically, a test server is configured to have assertions enabled. This means that whenever an assertion is reached
during run-time, it is executed. If the assertion fails, the exception can be logged or shown to a user.
To start a server with assertions enable, the server must be started with the flag -ea. This is the same flag used to
enable assertions in Java programs.
Test server ports
Test servers are often configured to run on a unique port. This helps to isolate the test environment and to ensure that
other processes or users do not inadvertently connect to the test server.

Starting and stopping test servers

You can initiate the running of a scenario, feature file, or test suite whether there is a test server running or not.
If there is a test server running, Behavior Testing Framework runs the scenarios on that test server. When the
scenarios are complete, the server is left running.
If there is no test server running, Behavior Testing Framework starts a test server, runs the scenarios on that test
server, and then stops the test server.
If you plan to run multiple feature files or test suites in an ad hoc manner, you can start a test server and then run the
scenarios as needed. This may be more efficient as the test server needs to execute the start-up process only once.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

42 chapter 5: Running scenarios

IMPORTANT There is a known issue with Behavior Testing Framework 10.0.1. If there is a running
test server and you run a test suite, the test suite is not able to run properly and Behavior Testing
Framework throws an ArrayOutOfBounds exception. As a workaround, stop the test server before
running a test suite.

Running feature files from Studio
From Studio, you can run scenarios and feature files on demand. This is useful when you want to ensure a newly
written scenario or feature file is working as expected. When appropriate, you can also run all of the feature files in a
single directory.

The test results tab

When you run scenarios from Studio, Studio opens a testing tab at the bottom of the Studio interface. The test results
appear on this tab.
The left pane shows test results in a hierarchical format.
• If all scenarios pass, a green check mark icon with an "All Tests Passed" label appears.
• If one or more scenarios fail, a yellow "X" icon with a "Test Results" label appears.

From these icons, you can drill down to get more explicit information on the scenarios that passed and failed.
The right pane shows console output generated during the running of the test. This output includes the number of
scenarios that passed and failed. If there are any failures, additional information may appear to help identify the
cause of the failure, such as exceptions and stack traces.

Run an individual scenario from Studio

Procedure

1. In Studio, navigate to configuration/res/cucumber. This directory contains subdirectories that contain the
feature files.

2. Open the feature file containing the scenario.
3. To run a scenario, right-click the scenario name and select Run 'Scenario: <scenario>'.

Run feature files from Studio

Procedure

1. In Studio, navigate to configuration/res/cucumber. This directory contains subdirectories that contain the
feature files.

2. To run an individual feature file:
• Expand the subdirectory containing the feature file.
• Right-click the file and select Run 'Feature: <feature>'.

3. To run all feature files in a given directory:
• Right-click the directory and select Run→All features in: <directory>

Running groups of feature files
A test suite is a Gosu class that identifies a set of feature files to run at the same time. Test suites can be run either
from Studio or from a command prompt. Test suites make it easier to run related feature files automatically as a part
of continuous integration.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Running scenarios 43

Behavior Testing Framework includes one example suite in the configuration/gtest folder, the
PCBehaviorCucumberSuite test suite.

Narrowing the scope of a test suite

Every test suite must identify a single parent directory. By default, the test suite executes all feature files in that
directory and its subdirectories.
You can narrow the scope of a test suite by using tags. In Behavior Testing Framework, a tag is a string added to a
feature file that identifies a category to which the feature file belongs. Tags always start with an "@". For example,
@supervisor, @personal_auto, and @renewal are all valid tags.
When you define the test suite, you can include one or more tags to the suite definition. For each tag, you can
specify that either a feature file must have the tag to be included in the suite, or that a feature file must not have the
tag to be incuded in the suite. This narrows the scope of the test suite to only the feature files in the given directory
(and its subdirectories) that have all of the specified tags. For example:
• A test suite with @supervisor includes all feature files with the @supervisor tag. (Whether they have other tags

or not is irrelevant.)
• A test suite with @supervisor and @personal_auto includes all feature files with both the @supervisor tag and

the @personal_auto tag. (Whether they have other tags or not is irrelevant.)
• A test suite with @supervisor and not @personal_auto includes all feature files with the @supervisor tag and

without the @personal_auto tag. (Whether they have other tags or not is irrelevant.)
In both feature files and test suites, tags can be listed in any order.
Tags are case-sensitive. For example, @PA_submission and @pa_submission are considered to be different tags.
A single feature file can belong to any number of test suites. For example, suppose you have a feature file with the
following tags: @supervisor @personal_auto. You then create two test suites: one for all @supervisor tests, and
one for all @personal_auto tests. The initial feature file will be included in both test suites.

Test suite reports

When you run a test suite, by default, Behavior Testing Framework generates two reports that identify test
outcomes:
• An HTML report named index.html in build/test-results/<testSuiteName>/CucumberHTMLReport.
• A JUnit report named CucumberResults.xml in build/test-results/<testSuiteName>.

You can modify the name and location of the report in the test suite definition.

Create a test suite class

Procedure

1. Create a Gosu class.
• Guidewire recommends ending the class name with Suite_Ext.

2. Navigate to the existing PCBehaviorCucumberSuite class. Copy its contents into your new class.
3. Modify the contents as needed.

a. Optionally modify the html: portion of the :plugin value to specify a different name or location for the
HTML test results report.

b. Optionally modify the junit: portion of the :plugin value to specify different name or location for the
JUnit test results report.

c. Optionally modify the :features value to specify a different parent directory. By default, the test suite
includes all feature files in the parent directory and its subdirectories.

d. Optionally modify the :tags value to specify one or more tags. This restricts the suite to including only
feature files that have all the listed tags. If you include multiple tags, they must be in a comma-delimited
list, such as "@tag1","@tag2". The tags can be listed in any order.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

44 chapter 5: Running scenarios

e. Optionally modify the :tags value to exclude one or more tags. This restricts feature files that have the
listed tags from the test suite. To indicate a tag must be excluded, prefix it with a tilda. For example,
"~@tag3".

Example test suite
The following code is an example suite named CalendarAdminSuite. It runs all feature files in the modules/
configuration/res/cucumber directory (in other words, all feature files in Behavior Testing Framework) that have
both the @calendar tag and the @admin tag.
package gw.suites
uses cucumber.api.CucumberOptions
uses cucumber.api.SnippetType
uses cucumber.api.junit.Cucumber
uses org.junit.runner.RunWith
@Export
@RunWith(Cucumber)
@CucumberOptions(
 :dryRun = false,
 :plugin = {"pretty",
 "html:build/test-results/PCBehaviorCucumberSuite/CucumberHTMLReport",
 "junit:build/test-results/PCBehaviorCucumberSuite/CucumberResults.xml"},
 :monochrome = true,
 :glue = {"gw.cucumber"},
 :snippets = SnippetType.CAMELCASE,
 :strict = true,
 :features = {"modules/configuration/res/cucumber"},
 :tags = {"@calendar","@admin"}
)
class CalendarAdminSuite {}

Running a test suite from Studio
To run a test suite from Studio, navigate to the directory that contains the test suite class (such as gtest/gw/
suites). Then, right-click the class and select Run '<suite>'.

IMPORTANT There is a known issue with Behavior Testing Framework 10.0.1. If there is a running
test server and you run a test suite, the test suite is not able to run properly and Behavior Testing
Framework throws an ArrayOutOfBounds exception. As a workaround, stop the test server before
running a test suite.

The test results tab

When you run scenarios from Studio, Studio opens a testing tab at the bottom of the Studio interface. The test results
appear on this tab.
The left pane shows test results in a hierarchical format.
• If all scenarios pass, a green check mark icon with an "All Tests Passed" label appears.
• If one or more scenarios fail, a yellow "X" icon with a "Test Results" label appears.

From these icons, you can drill down to get more explicit information on the scenarios that passed and failed.
The right pane shows console output generated during the running of the test. This output includes the number of
scenarios that passed and failed. If there are any failures, additional information may appear to help identify the
cause of the failure, such as exceptions and stack traces.

Running a test suite from a command prompt
Compiling resources required for running tests suites from a command prompt

Test suites can be run using the gwb runCucumberSuite command. However, before this command can be used,
you must compile resources needed by the processes that gwb runCucumberSuite uses. This is done by first
executing the gwb compile command from the application directory. For example:

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Running scenarios 45

gwb compile

Typically, you need to execute this command only once. You typically do not need to execute it prior to each test.
However, these is no harm in executing this command multiple times.
If a test execution fails with a java.lang.IllegalStateException that starts "no modules found at...", you may
need to execute or re-execute gwb compile.

Running tests suites from a command prompt

Once the necessary resources have been compiled, you can run a test suite from a command prompt by executing the
following from the application directory:
gwb runCucumberSuite -Dsuite=pathToSuite.suiteName

For example:

gwb runCucumberSuite -Dsuite=gw.suites.CalendarAdminSuite

This command compiles and runs the feature files in the specified test suite.

IMPORTANT There is a known issue with Behavior Testing Framework that prevents a test suite from
running if there is a running test server. When this is attempted, Behavior Testing Framework throws
an ArrayOutOfBounds exception. As a workaround, if there is a running test server, stop it before
executing the test suite.

Viewing test results

Behavior Testing Framework generates information on the test results. You can view these results by navigating to
modules/configuration/build/reports/tests/executeCucumberSuite and clicking index.html.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

46 chapter 5: Running scenarios

Part 2

Mapping steps to implementation
code

The mapping layer of Behavior Testing Framework maps scenarios to the code that runs the steps. In the
implementation layer of the framework, you use context APIs in writing your step methods. You can extend the
context APIs that the framework provides or create your own new context APIs.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

chapter 6

Creating step methods

Behavior Testing Framework consist of a set of resources that can be grouped into three layers. The second layer is
the mapping layer. The resources in this layer map the scenarios to the implementation code that executes them. The
resources in this layer are sometimes referred to as glue code. (Glue code is an programming term code that exists to
connect different sets of code that are otherwise incompatible.)
There are three fundamental resources for this layer: Context Factory, RemoteSmokeTestHelperModule, and step
methods. This topic describes these resources and how to create step methods.

Glue code in Behavior Testing Framework
One of the goals of Behavior Testing Framework is to create a strong separation between the business description of
behaviors and the implementation details for those behaviors. This provides flexibility because you can change a
scenario without having to worry about the implementation details, and you can change implementations without
having to worry about the impact on scenarios.
However, this separation comes with a question. How can each scenario be associated with the correct
implementation code? For example, when there is a step such as "Given I am a user with the "X" role", how does
Behavior Testing Framework identify the correct impl method to execute?

Creating step methods 49

Behavior Testing Framework answers this question with the resource in the mapping layer. These are also referred to
as the glue code, which means this code exists to connect different sets of code that are otherwise incompatible.
There are three types of resources that form the glue code:
• Context Factory
• RemoteSmokeTestHelperModule
• The step methods

Context Factory
All of the implementation details are stored in a set of context APIs. For example, Admin Context is a context API
that contains implementation details related to the administration business context. All of these context APIs must be
known to the glue code so that the context AI with the correct implementation can be selected.
Context Factory is a set of resources whose primary role is to make all of the context APIs available within the glue
code. Context Factory consists of two Gosu classes: ContextFactory (an interface) and ContextFactoryImpl (an
implementation of the interface). All of the context API interfaces are injected into ContextFactoryImpl.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

50 chapter 6: Creating step methods

RemoteSmokeTestHelperModule
Through Context Factory, the glue code has access to all of the interfaces in the context APIs. But, Context Factory
alone does not have information on which impl implements a given interface.
The glue code identifies which impl to use for a given interface through a series of binders. These binders are
declared in RemoteSmokeTestHelperModule.
For example, the following line of code binds the AdminContext interface to the AdminContextImpl impl. If any
code references a method from the AdminContextInterface, the glue code will look in AdminContextImpl to find the
implementation of the method.
// Admin Context binder
bind(AdminContext).to(AdminContextImpl)

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating step methods 51

Furthermore, some scenarios are LOB-specific. In these cases, there could be multiple impls that declare a method
with the same name, but each impl has an LOB-specific implementation of the method. For these situations,
RemoteSmokeTestHelperModule uses a map binder that binds every policy type to the appropriate impl.
For example, the following lines of code create a map binder for Quick Quote submissions. Each of the policy types
(PERSONALAUTO and WORKERS_COMPENSATION) is mapped to an LOB-specific impl
(PASubmissionContextQuickQuoteImpl and WCSubmissionContextQuickQuoteImpl, respectively).
// Quick Quote Submission Contexts
var quickQuoteSubmissionContexts = MapBinder.newMapBinder(binder(), ProductCode, SubmissionContext,
Names.named("QuickQuote"))
quickQuoteSubmissionContexts.addBinding(ProductCode.PERSONAL_AUTO).to(PASubmissionContextQuickQuoteImpl)
quickQuoteSubmissionContexts.addBinding(ProductCode.WORKERS_COMPENSATION).to(WCSubmissionContextQuickQuoteImpl)

Step methods
Finally, every step is associated with a step method. A step method is a Gosu method that maps a scenario step to a
method in a specific interface.
Step methods are declared inside step classes. Every step class injects Context Factory. Therefore, every step method
has access to all of the context API interfaces. And, because RemoteSmokeTestHelperModule binds every interface
to one or more impls, the step method can name the method to implement.
For example, the following code is a step method from the AdminSteps class.
@Given("^I am a user with the \"([^\"]*)\" role$")
function createUserWithRoleAndSetAsCurrentUser(roleString: String) {
 _contextFactory.getAdminContext().createAndSetUserWithRole(roleString)
}

The step method is: createUserWithRoleAndSetAsCurrentUser. It maps the "I am a user with the "X" role"
step to the createAndSetUserWithRole method from the AdminContext interface.
(RemoteSmokeTestHelperModule maps this interface to the AdminContextImpl impl.)

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

52 chapter 6: Creating step methods

The remainder of this topic discusses step methods in detail. For information on when and how to modify Context
Factory and RemoteSmokeTestHelperModule, see:
• “Extending context APIs” on page 57
• “Creating context APIs” on page 67
• “The Line/Job Context API” on page 77

Step method structure
A step method is a Gosu method that maps a scenario step to a method in a specific interface.
Step methods have a three-part structure:
• The method connector
• The method declaration
• The method body

The scenario step connector
Step methods start with a line that connects the scenario step to the step method itself. In Cucumber, the scenario
step is referred to as a Cucumber expression.
The scenario step connector has the following syntax:
@keyword("^scenarioStep$")

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating step methods 53

where:
• @ is a literal character.
• keyword is a Gherkin keyword, typically Given, Then, or When.
• ("^ and $") are literal characters that delimit the method name.
• scenarioStep is the Cucumber expression for the corresponding scenario step.

For example:
@When("^I complete the activity$")

A step method can be used anywhere in a scenario, regardless of the Gherkin keyword used in the scenario step
connector. For example:
• You could use the Given keyword in a scenario step connector, and then use that method in a When step.
• You could use the And keyword in a scenario step connector, and then use that method in a Then step.

Wherever possible, Guidewire recommends using only the Given, Then, or When keywords in scenario step
connectors. This helps to clarify if the primary purpose of the method is to create pre-conditions, execute actions, or
verify that actions executed correctly.

Input parameters

When a method has an input parameter, the parameter is named in the scenario step connector and delimited by a
special set of characters. The meaning of these characters is defined by the Gherkin language. The following table
lists common character sets used in the base configuration step methods. For a complete description of character
meanings, refer to the Cucumber documentation.

Character String Meaning Example

("^ Start of the method name @When("^I complete the activity$")

$") End of the method name @When("^I complete the activity$")

\"([^\"]*)\" String parameter whose value is any text (Technically,
this expression means “any character - except a double
quote - that occurs zero or more times inside double
quotes”.)

@When("^the payment plan of the policy is
changed to \"([^\"]*)\"$")

\"(X|Y)\": Portion of a string parameter whose value is either X or
Y

@Given("^an account of type \"(Person|
Company)\":$")

(?:X|Y) Portion of a string parameter whose value is either X or
Y

@When("^(?:a|1) policy is added to this
account$")

\"(\\d+)\" Numeric parameter (any set of digits) @Then("^a maximum of \"(\\d+)\" invoices
are generated$")

\"(\\d+%)\" Percent parameter (any set of digits followed by a "%") @Then("^one invoice with \"(\\d+%)\" down
is created$")

The method declaration
As is the case with all Gosu methods, you use the Gosu keyword function to declare a step method.
If the step method takes one or more parameters, then those values are typically included in the method declaration.
For example:
@And("^the submission has an effective date of \"([^\"]+)\"$")
function submissionEffectiveOn(effectiveDate : String) {
_contextFactory.getSubmissionContext().setEffectiveDate(DateTransformer.transform(effectiveDate))
}

This scenario step provides a String parameter that identifies the submission's effective date. This string is then
passed into the method as effectiveDate.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

54 chapter 6: Creating step methods

The method body
Step methods always end by calling one or more implementation methods on the appropriate context API. The
_contextFactory object is used to access the context API and implementation method.
For example, consider the following:
@When("^I quote the submission$")
function quoteTheSubmission() {
 _contextFactory.getSubmissionContext().quote()
}

The final line of the method calls the quote implementation method. To do this, it uses the _contextFactory object
to access the SubmissionContext interface. This interface is bound to an impl, and therefore the step method can
reference any method in that impl.

Step classes
A step class is a class that contains definitions for step methods used in features.

Step class structure
Steps classes contain a set of injected variables followed by a set of step method definitions.

The @Export annotation

The base configuration step classes start with an @Export annotation. This is an internal Guidewire annotation that
allows a file to be editable in Studio. You do not need to include this annotation in any custom Step classes.

Injected dependencies

The @Inject annotation identifies a dependency that is being injected into the steps class. All step classes require
the following dependency:
@Inject
var _contextFactory : ContextFactory

This code makes the Context Factory dependency object available to each step method definition. The method
definitions uses this object to invoke the appropriate context API and call the appropriate method on that API.
Some step classes include additional injected dependencies. For example, RatingSteps also includes:
@Inject
var _policyPeriod : PolicyPeriodWrapper

The remainder of the class is a list of step method definitions.

Best practices for creating step class files
To minimize upgrade conflicts, Guidewire recommends that you avoid making modifications to the base
configuration step classes. Instead, add testing extensions to your own files.
The base configuration step class files are stored in gtest/gw/cucumber/steps.
Guidewire recommends storing all of the custom step class files, API files, and impl files in a single directory, such
as gtest/gw/cucumber/customer, with the following subdirectories:
• context/api

• context/impl

• steps

You can use subdirectories in gtest/gw/cucumber/customer/steps to organize step class files. There are no
technical restrictions for how to group step class files together. A feature can use any step method, regardless of the
location of the step class that defines it. And, a step class can call implementation code from any impl file.
Therefore, group files together in a way that makes the most sense to the business.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating step methods 55

Guidewire recommends adding an _Ext suffix to all new files, including step class files.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

56 chapter 6: Creating step methods

chapter 7

Extending context APIs

For Behavior Testing Framework, there are three primary implementation tasks related to context APIs:
• Extending a base configuration context API, which can include:

◦ Adding new methods
◦ Overriding existing methods

• Creating a custom context API
• Adding resources for a specific line of business to the LOB/Job context API

This topic focuses on the process of extending a base configuration context API. For information on creating a
custom context API, see “Creating context APIs” on page 67. For information on adding resources for a line of
business, see “The Line/Job Context API” on page 77.

Overview of LOB-agnostic context APIs
In PolicyCenter, some business contexts function the same way, regardless of the policy's line of business. One
example of this is the administration business context. Supervisors and administrators typically perform their tasks
in the same way. Their work does not vary with any job's line of business. These business contexts are referred to as
LOB-agnostic business contexts. Behavior Testing Framework supports them using LOB-agnostic context APIs.
An LOB-agnostic context API is a context API that declares its logic in a single interface/impl pair. There is no need
to create multiple impls because the same set of methods are used for every scenario.

Extending LOB-agnostic context APIs

During an implementation of Behavior Testing Framework, you may need to extend an existing LOB-agnostic
context API. This is necessary when the base configuration includes a context API, but it does not include all of the
functionality you need for testing your implementation of PolicyCenter.
For example, your implementation may require testing of certain aspects of supervisor functionality, such as setting
the email of a user that is in one of the supervisor's groups. This is administration functionality, but there are no
methods to test this in the base configuration Admin Context. However, you can extend the Admin Context to add it.

LOB-agnostic context API resources

Extending context APIs 57

Base configuration resources for LOB-agnostic business contexts
The following diagram summarizes an example of the base configuration resources that support each LOB-agnostic
business context. This example is for Admin Context.

First (#1), there are one or more scenarios that contain steps written in Gherkin. Every scenario is stored in a feature
file.
Every step links to a step method. Step methods are defined in step classes, such as AdminSteps (#2). Step methods
are written in Gosu. A step may require multiple implementations. Therefore, every step class injects an instance of
ContextFactory. This instance is used to identify the correct implementation for each situation that uses the step. To
make it easier to modify implementations without needing to modify scenarios, the implementations are not stored
in the step classes themselves.
Admin Context (#3) is defined by two resources:
• AdminContext, which is an interface that defines methods relevant to this context.
• AdminContextImpl, which is an impl that implements the AdminContext interface. This is where the

implementation code is stored.
Similarly, there are two resources that define ContextFactory (#4):
• ContextFactory, which is an interface that defines methods with return values of the different context APIs.
• ContextFactoryImpl, which is an impl that implements the ContextFactory interface. All of the different

context APIs are injected into this impl. In turn, this impl is injected into every step file.
Finally, there is the RemoteSmokeTestHelperModule (#5): PCRemoteSmokeTestHelperModule. This file binds each
interface to its corresponding impl.

Extending base configuration context APIs
When you extend a LOB-agnostic context API, you must create several new files and add code to existing files. The
following diagram illustrates an example of this. In the diagram, base configuration resources appear in black. New
files and code added to existing files appears in blue.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

58 chapter 7: Extending context APIs

In this example, there are new scenarios testing a supervisor's ability to administer people on their team. To test
these scenarios, AdminContext must be extended to add a step that creates a user who is a member of the
supervisor's team.

First, you must create one or more new scenarios in new feature files (#1). These files specify new steps, such as
"Given I am the supervisor of "user".
Then, you must create a new step definition in a new step class (#2). Guidewire recommends naming it
ExistingStepClass_Ext, such as AdminSteps_Ext. Like the base configuration step classes, the new class must inject
an instance of ContextFactory.
You must add two new resources for the extension context API itself (#3):
• AdminContext_Ext, which is an interface that extends the base configuration interface and defines the new

methods needed.
• AdminContextImpl_Ext, which is an impl that extends the base configuration impl and implements the extension

interface. The new implementation code is stored here.
You must also add code to Context Factory (#4):
• ContextFactory - Add a method the specifies a return value of the extension context API.
• ContextFactoryImpl - Inject the extension context API into this impl, and override the new interface method.

Finally, in PCRemoteSmokeTestHelperModule (#5), you must bind the extension interface to the extension impl.

Extending a base configuration context API
The following section identifies the high-level procedure for extending a base configuration LOB-agnostic context
API. It is followed by an example that reiterates each step in a detailed manner.
The code in the examples can be copied and pasted into Studio to creating a working extension. Keep in mind that,
in some cases, additional uses statements are required but are not present in the example code. If Studio states it
"cannot resolve symbol" for a given type, you can add a uses statement by clicking inside the type name and
pressing ALT + ENTER.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Extending context APIs 59

Extend a base configuration context API
About this task

This procedure is followed by a detailed example with code that you can copy and paste into Studio to form a
working context API extension.

Procedure

1. Create new scenarios and feature files that specify new steps.
• For more information on creating scenarios, see “Writing scenarios” on page 31.

2. Create a new step class that provides step methods for the new steps.
• For more information on creating step methods, see “Creating step methods” on page 49.

3. Create a new context API interface.
• It must extend the existing interface. (For example: AdminContext_Ext extends AdminContext)
• It must define the new methods that are being added to the base configuration API.

4. Create a new context API impl.
• It must extend the existing impl. (For example: AdminContextImpl_Ext extends AdminContextImpl)
• It must implement the new interface. (For example: implements AdminContext_Ext)
• It must provide implementations for the new methods.

5. Modify ContextFactory.
• Add a new method that returns the extended context API. (For example: AdminContext_Ext).

6. Modify ContextFactoryImpl.
• Inject the extended context API. (For example: AdminContext_Ext).
• Add a new override that returns the extended context API. (For example: AdminContext_Ext).

7. Modify the RemoteSmokeTestHelperModule class.
• Add code to bind the extended context API's interface to its impl.

Step 1: Creating scenarios that have new steps
Write new scenarios and feature files that contain new steps that extend the base configuration context API.

The following text is an example of a new Email_Supervisor_Ext.feature file. It contains several new steps,
including "I am the supervisor of "<user>".
Feature: Email functionality

 As a supervisor,
 I want to administer my team's access to email functionality

 Background:
 Given I am a user with the "Underwriting Supervisor" role

 Scenario: Set a user's email address
 Given I am the supervisor of "Alice Applegate"
 When I set the user's email address to "aapplegate@customer.com"
 Then the user's primary email address should be "aapplegate@customer.com"

For more information on creating scenarios, see “Writing scenarios” on page 31

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

60 chapter 7: Extending context APIs

Step 2: Creating the step method
Create a new step class. The class must:
• Provide step methods for the new steps.
• Inject ContextFactory

The following text is an example of a new EmailSteps_Ext class.
package gw.cucumber.customer.steps.admin

uses com.google.inject.Inject
uses cucumber.api.java.en.Given
uses cucumber.api.java.en.Then
uses cucumber.api.java.en.When
uses gw.cucumber.context.api.ContextFactory
// additional uses statements may be needed

class EmailSteps_Ext {

 @Inject
 var _contextFactory : ContextFactory

 @Given ("^I am the supervisor of \"([^\"]*)\"$")
 public function getTeamMember(userName : String) {
 _contextFactory.getAdminContext_Ext().getTeamMember(userName)
 }

 @When ("^I set the user's email address to \"([^\"]*)\"$")
 public function iSetTheUserEmailAddress(emailAddress : String) {
 _contextFactory.getAdminContext_Ext().setUserEmailAddress(emailAddress)
 }

 @Then ("^the user's primary email address should be \"([^\"]*)\"$")
 public function theEmailAddressShouldBe(emailAddress : String) {
 _contextFactory.getAdminContext_Ext().verifyEmailAddress(emailAddress)
 }

}

For more information on creating step methods, see “Creating step methods” on page 49.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Extending context APIs 61

Step 3: Extending the context API interface

Create a new interface that extends the existing context API interface.
The following text is an example of a new AdminContext_Ext interface.
package gw.cucumber.customer.context.api

// additional uses statements may be needed
uses gw.cucumber.context.api.admin.AdminContext

interface AdminContext_Ext extends AdminContext {

 /**
 * Get a user who belongs to a team that the supervisor supervises
 *
 * @param userName
 */
 function getTeamMember(userName : String)

 /**
 * Set the user's email address.
 *
 * @param emailAddress
 */
 function setUserEmailAddress(emailAddress : String)

 /**
 * Verify the user's email address.
 *
 * @param emailAddress
 */
 function verifyEmailAddress(emailAddress : String)

}

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

62 chapter 7: Extending context APIs

Step 4: Extending the context API impl

Create a new impl that extends the existing context API impl and implements the extension interface.
For each method, Guidewire recommends writing initial implementations that simply throw an
UnsupportedOperationException. When the initial work is complete, you can test the structure by running a test
and verifying that this type of exception is thrown. Later, you can replace each implementation with actual code.
The following text is an example of a new AdminContextImpl_Ext impl.
package gw.cucumber.customer.context.impl.smoketest

// additional uses statements may be needed
uses gw.cucumber.context.impl.smoketest.common.AdminContextImpl
uses gw.cucumber.customer.context.api.AdminContext_Ext

class AdminContextImpl_Ext extends AdminContextImpl implements AdminContext_Ext {

 override function getTeamMember(userName : String) {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function setUserEmailAddress(emailAddress : String) {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function verifyEmailAddress(emailAddress : String) {
 throw new UnsupportedOperationException("Not yet implemented")
 }
}

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Extending context APIs 63

Step 5: Modifying ContextFactory

Modify ContextFactory so that it defines a method that returns the extension context API.
The following text is an example of code that can be added to ContextFactory.gs.
/**
 * Returns the api implementation object casted to {@link gw.cucumber.customer.steps.context.api.AdminContext_Ext}.
 * This method should be used on contexts that are LOB agnostic.
 */
function getAdminContext_Ext() : AdminContext_Ext

Step 6: Modifying ContextFactoryImpl

Modify ContextFactoryImpl so that it has an implementation for the new interface method and so that it injects the
new context API.
The following text is an example of code that can be added to ContextFactoryImpl.
// Contexts
...
@Inject var _adminContext_Ext : AdminContext_Ext
...
override function getAdminContext_Ext(): AdminContext_Ext { return _adminContext_Ext }

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

64 chapter 7: Extending context APIs

Step 7: Binding the extension interface to the impl

Modify PCRemoteSmokeTestHelperModule so that it binds the extension interface and the extension impl.
The following is an example of code that can be added to PCRemoteSmokeTestHelperModule.gs to bind the new
interface and impl.
...
bind(AdminContext_Ext).to(AdminContextImpl_Ext)

Running the first test
At this point, you can run the scenarios created in the first step. The scenario will fail because it will invoke a
method whose implementation simply throws an UnsupportedOperationException. But the test will not result in
an error. This ensures that you have the technical structure in place and you can begin to write the actual
implementation code.

Summary of best practices
To minimize upgrade conflicts, Guidewire recommends that you avoid making modifications to the base
configuration Behavior Testing Framework files. Instead, add your testing extensions to your own files. Exceptions
to this recommendation include the following files, which are singleton files and present minimal effort when
resolving upgrade conflicts:
• ContextFactory.gs

• ContextFactoryImpl.gs

• PCRemoteSmoketestHelperModule.gs

To ensure that your customizations do not create any upgrade conflicts, Guidewire recommends the following:
• End all file names with an _Ext suffix.
• Create context API interfaces in gw.cucumber.customer.context.api.<approach>. The name of <approach>

identifies the technology used in the implementations, such as smoketest or rest.
• Create context API impls in gw.cucumber.customer.context.impl.
• For you initial scenario, implement the interface methods so that they throw an
UnsupportedOperationException. Once you have confirmed that the scenario fails and throw this exception,
you can replace impl methods with actual code as needed.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Extending context APIs 65

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

66 chapter 7: Extending context APIs

chapter 8

Creating context APIs

For Behavior Testing Framework, there are three primary implementation tasks related to context APIs:
• Extending a base configuration context API, which can include:

◦ Adding new methods
◦ Overriding existing methods

• Creating a custom context API
• Adding resources for a specific line of business to the LOB/Job context API

This topic focuses on the process of creating a custom context API. For information on extending a base
configuration context API, see “Extending context APIs” on page 57. For information on adding resources for a line
of business, see “The Line/Job Context API” on page 77.

Overview of LOB-agnostic context APIs
In PolicyCenter, some business contexts method the same way, regardless of the policy's line of business. One
example of this is the administration business context. Supervisors and administrators typically perform their tasks
in the same way. Their work does not vary with any job's line of business. These business contexts are referred to as
LOB-agnostic business contexts. Behavior Testing Framework supports them using LOB-agnostic context APIs.
An LOB-agnostic context API is a context API that declares its logic in a single interface/impl pair. There is no need
to create multiple impls because the same set of methods are used for every scenario.

Creating new LOB-agnostic context APIs

During an implementation of Behavior Testing Framework, you may need to create a new LOB-agnostic context
API. This is necessary when you need functionality for testing your implementation of PolicyCenter that does not
map to any base configuration context API.
For example, your implementation may require testing of certain aspects of calendar functionality, such as defining a
holiday and ensuring that PolicyCenter takes the holiday into account when calculating an activity's due date. This
type of functionality does not correspond to any of the base configuration context APIs. It may require a new
context API, such as CalendarContext.

LOB-agnostic context API resources
Creating context APIs 67

Base configuration resources for LOB-agnostic business contexts
The following diagram summarizes an example of the base configuration resources that support each LOB-agnostic
business context. This example is for Admin Context.

First (#1), there are one or more scenarios that contain steps written in Gherkin. Every scenario is stored in a feature
file.
Every step links to a step method. Step methods are defined in step classes, such as AdminSteps (#2). Step methods
are written in Gosu. A step may require multiple implementations. Therefore, every step class injects an instance of
ContextFactory. This instance is used to identify the correct implementation for each situation that uses the step. To
make it easier to modify implementations without needing to modify scenarios, the implementations are not stored
in the step classes themselves.
Admin Context (#3) is defined by two resources:
• AdminContext, which is an interface that defines methods relevant to this context.
• AdminContextImpl, which is an impl that implements the AdminContext interface. This is where the

implementation code is stored.
Similarly, there are two resources that define ContextFactory (#4):
• ContextFactory, which is an interface that defines methods with return values of the different context APIs.
• ContextFactoryImpl, which is an impl that implements the ContextFactory interface. All of the different

context APIs are injected into this impl. In turn, this impl is injected into every step file.
Finally, there is the RemoteSmokeTestHelperModule (#5): PCRemoteSmokeTestHelperModule. This file binds each
interface to its corresponding impl.

Creating new context APIs
When you create a new LOB-agnostic context APIs, you must create several new files and add code to existing files.
The following diagram illustrates an example of this. In the diagram, base configuration resources appear in black.
New files and code added to existing files appears in blue.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

68 chapter 8: Creating context APIs

In this example, there are new scenarios testing the impact of holidays on activity due dates. To test these scenarios,
a new CalendarContext must be created to add new step methods that create holidays, create activities, and verify
activity due dates.

First, you must create one or more new scenarios in new feature files (#1). These files specify new steps, such as
"Given tomorrow is the only holiday".
Then, you must create a new step definition in a new step class (#2). Guidewire recommends naming it
ContextSteps_Ext, such as CalendarSteps_Ext. Like the base configuration step classes, the new class must inject
an instance of ContextFactory.
You must add two new resources for the new context API itself (#3):
• CalendarContext_Ext, which is an interface that defines the new methods needed.
• CalendarContextImpl_Ext, which is an impl that implements the new interface. The new implementation code

is stored here.
You must also add code to Context Factory (#4):
• ContextFactory - Add a method the specifies a return value of the new context API.
• ContextFactoryImpl - Inject the new context API into this impl, and override the new interface method.

Finally, in PCRemoteSmokeTestHelperModule (#5), you must bind the new interface to the new impl.

Creating a new context API
The following section identifies the high-level procedure for creating a new LOB-agnostic context API. It is
followed by an example that reiterates each step in a detailed manner.
The code in the examples can be copied and pasted into Studio to creating a working context API. Keep in mind
that, in some cases, additional uses statements are required but are not present in the example code. If Studio states
it "cannot resolve symbol" for a given type, you can add a uses statement by clicking inside the type name and
pressing ALT + ENTER.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating context APIs 69

Create a new context API

About this task

This procedure is followed by a detailed example with code that you can copy and paste into Studio to form a
working custom context API.

Procedure

1. Create new scenarios and feature files that specify new steps.
• For more information on creating scenarios, see “Writing scenarios” on page 31.

2. Create a new step class that provides step methods for the new steps.
• For more information on creating step methods, see “Creating step methods” on page 49.

3. Create a new context API interface.
• It must define the new methods that are being added to the base configuration API.

4. Create a new context API impl.
• It must implement the new interface. (For example: implements CalendarContext_Ext)
• It must provide implementations for the new methods.

5. Modify ContextFactory.
• Add a new method that returns the new context API. (For example: CalendarContext_Ext).

6. Modify ContextFactoryImpl.
• Inject the new context API. (For example: CalendarContext_Ext).
• Add a new override that returns the new context API. (For example: CalendarContext_Ext).

7. Modify the RemoteSmokeTestHelperModule class.
• Add code to bind the new context API's interface to its impl.

Step 1: Creating scenarios that use new steps
Write new scenarios and feature files that contain new steps that extend the base configuration context API.

The following text is an example of a new Calendar_Supervisor_Ext.feature file. It contains several new steps,
including "I am the supervisor of "<user>".
Feature: Calendar functionality

 As a supervisor,
 I want to administer the business calendar

 Background:
 Given I am a user with the "Underwriting Supervisor" role
 And today is a "Monday"
 And tomorrow is the only holiday

 Scenario: Adding a new holiday to the calendar
 When I create an activity using the "General reminder" activity pattern
 Then there should be a "General remainder" activity
 And the due date should be "2" days from today

For more information on creating scenarios, see “Writing scenarios” on page 31.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

70 chapter 8: Creating context APIs

Step 2: Creating the step method
Create a new step class. The class must:
• Provide step methods for the new steps.
• Inject ContextFactory

The following text is an example of a new CalendarSteps_Ext class.
package gw.cucumber.customer.steps.admin

uses com.google.inject.Inject
uses cucumber.api.java.en.Given
uses cucumber.api.java.en.Then
uses cucumber.api.java.en.When
uses gw.cucumber.context.api.ContextFactory
// additional uses statements may be needed

class CalendarSteps_Ext {

 @Inject
 var _contextFactory : ContextFactory

 @Given ("^today is a \"([^\"]*)\"$")
 public function todayIsDayOfWeek(dayOfWeek : String) {
 _contextFactory.getCalendarContext_Ext().setTodaysDate(dayOfWeek)
 }

 @Given ("^tomorrow is the only holiday$")
 public function createHolidayForTomorrow() {
 _contextFactory.getCalendarContext_Ext().createHolidayForTomorrow()
 }

 @When ("^I create an activity using the \"([^\"]*)\" activity pattern$")
 public function iCreateActivityFromActivityPattern(activityPattern : String) {
 _contextFactory.getCalendarContext_Ext().createActivityFromActivityPattern(activityPattern)
 }

 @Then ("^there should be a \"([^\"]*)\" activity$")
 public function thereShouldBeAnActivity(activityPattern : String) {
 _contextFactory.getCalendarContext_Ext().verifyActivity(activityPattern)
 }

 @Then ("^the due date is \"(\\d+)\" days from today$")
 public function theDueDateIsXDaysFromToday(dueDateOffset : int) {

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating context APIs 71

 _contextFactory.getCalendarContext_Ext().verifyTimeUntilActivityIsDue(dueDateOffset)
 }

}

For more information on creating step methods, see “Creating step methods” on page 49.

Step 3: Creating the context API interface

Create an interface for the new context API interface.
The following text is an example of a new CalendarContext_Ext interface.
package gw.cucumber.customer.context.api

// additional uses statements may be needed

interface CalendarContext_Ext {

 /**
 * Set the application date to the first date on or after the current application date that is the given day of
week.
 *
 * @param dayOfWeek
 */
 function setTodaysDate(dayOfWeek : String)

 /**
 * Create a holiday for the day after the application date.
 */
 function createHolidayForTomorrow()

 /**
 * Create an activity with default values using the given activity pattern.
 *
 * @param activityPattern
 */
 function createActivityFromActivityPattern(activityPattern : String)

 /**
 * Verify that an activity exists whose activity pattern is the current pattern.
 *
 * @param activityPattern
 */
 function verifyActivity(activityPattern : String)

 /**
 * Verify that the difference between the application date and the activity's due date is equal to the expected
offset
 *
 * @param dueDateOffset
 */
 function verifyTimeUntilActivityIsDue(dueDateOffset : int)

}

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

72 chapter 8: Creating context APIs

Step 4: Creating the context API impl

Create a new impl for the context API that implements the new interface.
For each method, Guidewire recommends writing initial implementations that simply throw an
UnsupportedOperationException. When the initial work is complete, you can test the structure by running a test
and verifying that this type of exception is thrown. Later, you can replace each implementation with actual code.
The following text is an example of a new CalendarContextImpl_Ext impl.
package gw.cucumber.customer.context.impl.smoketest

// additional uses statements may be needed
uses gw.cucumber.customer.context.api.CalendarContext_Ext

class CalendarContextImpl_Ext implements CalendarContext_Ext {

 override function setTodaysDate(dayOfWeek : String) {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function createHolidayForTomorrow() {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function createActivityFromActivityPattern(activityPattern : String) {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function verifyActivity(activityPattern : String) {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function verifyTimeUntilActivityIsDue(dueDateOffset : int) {
 throw new UnsupportedOperationException("Not yet implemented")
 }
}

Step 5: Modifying ContextFactory

Modify ContextFactory so that it defines a method that returns the new context API.
The following text is an example of code that can be added to ContextFactory.gs.
/**
 * Returns the api implementation object casted to {@link
gw.cucumber.cucumber.customer.steps.context.api.CalendarContext_Ext}.
 * This method should be used on contexts that are LOB agnostic.
 */
function getCalendarContext_Ext() : CalendarContext_Ext

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating context APIs 73

Step 6: Modifying ContextFactoryImpl

Modify ContextFactoryImpl so that it has an implementation for the new interface method and so that it injects the
new context API.
The following text is an example of code that can be added to ContextFactoryImpl.
// Contexts
...
@Inject var _calendarContext_Ext : CalendarContext_Ext
...
override function getCalendarContext_Ext(): CalendarContext_Ext { return _calendarContext_Ext }

Step 7: Binding the new interface to the impl

Modify PCRemoteSmokeTestHelperModule so that it binds the extension interface and the extension impl.
The following is an example of code that can be added to PCRemoteSmokeTestHelperModule.gs to bind the new
interface and impl.
...
bind(CalendarContext_Ext).to(CalendarContextImpl_Ext)

Running the first test
At this point, you can run the scenarios created in the first step. The scenario will fail because it will invoke a
method whose implementation simply throws an UnsupportedOperationException. But the test will not result in
an error. This ensures that you have the technical structure in place and you can begin to write the actual
implementation code.

Summary of best practices
To minimize upgrade conflicts, Guidewire recommends that you avoid making modifications to the base
configuration Behavior Testing Framework files. Instead, add your testing extensions to your own files. Exceptions

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

74 chapter 8: Creating context APIs

to this recommendation include the following files, which are singleton files and present minimal effort when
resolving upgrade conflicts:
• ContextFactory.gs

• ContextFactoryImpl.gs

• PCRemoteSmoketestHelperModule.gs

To ensure that your customizations do not create any upgrade conflicts, Guidewire recommends the following:
• End all file names with an _Ext suffix.
• Create context API interfaces in gw.cucumber.customer.context.api.<approach>. The name of <approach>

identifies the technology used in the implementations, such as smoketest or rest.
• Create context API impls in gw.cucumber.customer.context.impl.
• For you initial scenario, implement the interface methods so that they throw an
UnsupportedOperationException. Once you have confirmed that the scenario fails and throw this exception,
you can replace impl methods with actual code as needed.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating context APIs 75

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

76 chapter 8: Creating context APIs

chapter 9

The Line/Job Context API

The Line/Job Context API stores implementation information that is relevant to either a specific line of business, a
specific job, or both. This topic discusses the structure of the Line/Job Context API.
• For information on supporting new lines of business for submission jobs, see “Testing submissions on a new line

of business” on page 85.

Overview of LOB-specific business contexts
In PolicyCenter, some business contexts function differently based on the policy's line of business. One example of
this is the context of creating a submission. Testing a personal auto submission has different requirements than
testing a workers' compensation submission.
When a business context varies based on the lines of business:
• Some testing logic may be needed for all lines of business and is identical across all lines of business.

◦ For example, creating an activity for a personal auto policy is identical to creating an activity for a workers'
compensation policy.

• Some testing logic may be needed for all lines of business, but is different for each line of business.
◦ For example, both personal auto and workers' compensation have costs. But, the logic to determine if a cost

exists is different for each line of business.
• Some testing logic may be needed for only one line of business. For example:

◦ Personal auto submissions require the ability to add a vehicle.
◦ Workers' compensation submissions require the ability to add covered employees

When a business context has testing requirements that vary based on the line of business, they are referred to as
LOB-specific business contexts. Behavior Testing Framework supports them using the LOB/Job Context API.
In the base configuration, the LOB/Job Context API provides support for two lines of business (personal auto and
workers' compensation) and all of the jobs common to underwriting (submission, issuance, policy change,
cancellation, reinstatement, rewrite, renewal, and audit). Testing requirements vary with each insurer, and therefore
the LOB/Job Context API does not provide support for all possible combinations of these lines of business and jobs.
Rather, the intention of the base configuration is to provide a wide breadth of examples. Based on these examples,
insurers can extend the LOB/Job Context API to suit their specific needs.

The Line/Job Context API 77

Structure of the Line/Job Context API
When testing scenarios that are LOB-specific or job-specific, there is sometimes a need to share implementation
code, and sometimes a need to isolate it. For example:
• A method to add line level coverages is needed for all policy-related tests, but:

◦ A method to add drivers is needed only for personal auto policy tests.
◦ A method to add covered workers is needed only for workers' compensation policy tests.

• A method to quote a job is needed for all job-related tests, but:
◦ A method to start a renewal is needed only for renewal tests.
◦ A method to apply preemption changes is needed only for policy change tests.

The Line/Job Context API has a multi-dimensional, multi-layer structure. This structure provides a way to share
code as needed and isolate code as needed.
There are two dimensions to this context API: one for Line of Business and one for Job.

The line of business dimension
The line of business dimension has a top-level, generic LineContext layer and multiple line-specific child layers.
Methods that are required for every line (such as addLineLevelCoverage) are declared at the top level. Methods
that are specific to a given line are declared at the child levels. For example:
• addCoveredEmployees is declared at the WCContext level.
• addDriver is declared at the PAContext level.

The following diagram depicts the line of business dimension. Gray shading indicates the class is abstract.

The job dimension
Similarly, the job dimension has a top-level, generic JobContext layer and multiple job-specific child layers.
Methods that are required for every job (such as quote) are declared at the top level. Methods that are specific to a
given job are declared at the child levels. For example:
• startRenewal is declared at the Renewal level.
• applyPreemptionChanges is declared at the PolicyChange level.

The following diagram depicts the job dimension. Gray shading indicates the class is abstract.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

78 chapter 9: The Line/Job Context API

The line/job impls
For every line/job combination that requires testing, there is an impl whose name is <Line><Job>ContextImpl. This
impl combines methods from the appropriate line of business layer and the appropriate job layer. For example, the
following diagram depicts an example of PAPolicyChangeContextImpl. This impl combines methods from the
line-specific PAContext and the job-specific PolicyChangeImpl.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

The Line/Job Context API 79

Like Java, Gosu does not support multiple inheritance. To create a <Line><Job>ContextImpl class (such as
PAPolicyChangeContextImpl) that inherits information from multiple, non-related parent classes:
• The job dimension is considered the "primary" dimension. The <Line><Job>ContextImpl extends the

appropriate <Job>ContextImplBase class and inherits its methods.
◦ For example, PAPolicyChangeContextImpl extends PolicyChangeContextImplBase.

• The methods from the appropriate <Line>ContextImpl are made available to the <Line><Job>ContextImpl
class through the use of a delegate named _lineContextDelegate.
◦ For example, the methods from PAContextImpl are made available to PAPolicyChangeContextImpl through

the use of a delegate named _lineContextDelegate.
This multi-layered structure provides flexibility so that testing logic can be implemented in a way that matches the
needs of each line of business and each job.
• Logic that is identical across all lines of business and jobs is implemented in either in LineContext and its impl

or in JobContext and its impl. For example:
◦ addLineLevelCoverages is implemented in LineContextImplBase.
◦ setEffectiveDate is implemented in JobContextImplBase.

• Logic that is LOB-specific (but the same for all jobs) is declared in <Line>Context and its impl. For example:
◦ addDriver is implemented in PAContextImpl.

• Logic that is job-specific (but the same for all LOBS) is declared in <Job>Context and its impl. For example:
◦ applyPreemptionChanges is implemented in PolicyChangeContextImpl.

• Logic that is LOB-specific and job-specific is declared in <Line><Job>Context and its impl. For example:
◦ verifyVehicleExists is implemented in PAPolicyChangeContextImpl.

The structure for submissions
All of the jobs follow the structure described above except for one - the submission job. PolicyCenter supports two
styles of submission, quick quote and full quote. Some testing logic is needed for both styles, and some is needed
only for quick quotes or for full quotes. To ensure that code is shared and isolated as appropriate, the submission job
has an additional layer.
The following diagram depicts the structure for personal auto submissions. Gray shading indicates the class is
abstract.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

80 chapter 9: The Line/Job Context API

As is the case with other jobs, there is a SubmissionContextImplBase impl. However, the child of this class is not a
concrete <LOB>SubmissionContextImpl impl. For example, there is no PASubmissionContextImpl.). Rather, it is a
second abstract impl named <LOB>SubmissionContextImplBase (such as PASubmissionContextImplBase). This
impl has two concrete children:
• <LOB>SubmissionContextQuickQuoteImpl

• <LOB>SubmissoinContextFullQuoteImpl

For example, PASubmissionContextImplBase has these two children:
• PASubmissionContextQuickQuoteImpl

• PASubmissoinContextFullQuoteImpl

Logic that is relevant to both types of submissions is declared in the parent ContextImplBase impl. Logic that is
specific to either quick quotes only or full quotes only is declared in the relevant child impl.

Resources associated with the Line/Job Context API

Resources directly associated with the Line/Job Context API
There are two resources directly associated with the LOB/Job context API:
• Context Factory
• PCRemoteSmokeTestHelper

Context Factory

Context Factory is the name used to refer to two Gosu classes: ContextFactory (an interface) and
ContextFactoryImpl (an implementation of the interface). All of the implementations needed for testing (such as

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

The Line/Job Context API 81

implementations for admin testing, activity testing, and so on) are injected into Context Factory. Context Factory is
injected into every step file. In this way, Context Factory acts as a dependency object that provides every step
definition with the ability to identify and call the appropriate implementation.
For the Line/Job context API, the only interfaces injected into ContextFactoryImpl are the generic job interfaces,
such as PolicyChangeContext, RenewalContext, and so on. All of the impls that are specific to a single Line/Job
combination (such as WCPolicyChangeContextImpl or PARenewalContextImpl) extend the generic job level, and
therefore they are inherently available to ContextFactoryImpl. When you create a new line of business, the new
line extends the generic job level. Therefore, you typically do not need to modify Context Factory.

PCRemoteSmokeTestHelper

PCRemoteSmokeTestHelper is a class that binds every context API implementation to one or more impl classes.
This class contains the logic used during runtime to identify the correct impl to use for a given interface that has
been injected into a step class through Context Factory.
For the Line/Job context API, the impls that are specific to a single Line/Job combination are bound to the
<Job>Context interface using map binders. For example, the following code creates the
policyChangeContextBinder map binder:
// Policy Change Contexts
var policyChangeContexts = MapBinder.newMapBinder(binder(), ProductCode, PolicyChangeContext)
policyChangeContexts.addBinding(ProductCode.PERSONAL_AUTO).to(PAPolicyChangeContextImpl)
policyChangeContexts.addBinding(ProductCode.WORKERS_COMPENSATION).to(WCPolicyChangeContextImpl)

When PolicyChangeContext is called in a scenario that uses a given policy type, the methods in the appropriate
Line/Job-specific impl are used to execute the scenario.

Resources indirectly associated with the Line/Job Context API
There are four sets of resources indirectly associated with the Line/Job context API:
• Feature files
• Step classes
• TagInfoProcessor

• ProductCode

Feature files and step classes

Feature files and step classes contain step method code used for testing a specific line of business and job. But,
neither of these files directly reference any context API. Feature files reference only step definitions in step classes,
and step classes reference only Context Factory.

TagProcessorInfo

Every feature file that has LOB-specific scenarios starts with an LOB tag, such as @personal_auto or
@homeowners. This tag identifies the LOB to be used for the scenarios.
Similarly, every feature file that has job-specific scenarios starts with a job tag, such as @submission or
@policy_change. This tag identifies the job to be used for the scenarios.
TagInfoProcessor contains code that sets the product code and the job subtype to the appropriate values for each
LOB-specific or job-specific scenario.
TagInfoProcessor is not directly associated with the Line/Job Context API. But, it contains code necessary for
setting up pre-condition data for every line-specific or job-specific scenario. (TagInfoProcessor does not play a
role in testing LOB-agnostic and job-agnostic scenarios.)

ProductCode

ProductCode is an enum that identifies the lines of business supported by Behavior Testing Framework.
For each line of business, there is an enum value (such as HOMEOWNERS or WORKERSCOMPENSATION) associated with
the corresponding typecode from PolicyCenter (such as HOPHomeowners or WorkersCompensation).

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

82 chapter 9: The Line/Job Context API

Like TagInfoProcessor, ProductCode is not directly associated with the Line/Job Context API. But, it contains
code necessary for setting up pre-condition data for every line-specific or job-specific scenario. (ProductCode does
not play a role in testing LOB-agnostic and job-agnostic scenarios.)

Adding a new line of business
When you add a new line of business, you must create a new set of LOB/Job impls in the LOB/Job Context API and
modify code in other resources to use those impls when appropriate. The following diagram illustrates an example
of adding business auto to the renewal job. In the diagram, base configuration resources appear in black. New files
and code added to existing files appears in blue.

For detailed information on adding a new line of business to submission, see “Testing submissions on a new line of
business” on page 85.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

The Line/Job Context API 83

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

84 chapter 9: The Line/Job Context API

chapter 10

Testing submissions on a new line of
business

The process of adding testing support for a new line of business is slightly different for submissions than it is for the
other non-submission jobs. This topic discusses the process for submissions.
• This topic assumes you are familiar with the structure of the Line/Job Context API. For more information, see

“The Line/Job Context API” on page 77.

Summary of the Line/Job Context API
The Line/Job Context API is a context API that provides implementation code for all scenarios that are line-specific,
job-specific, or both. It has two dimensions - a line of business dimension and a job dimension.
• The line of business dimension has a generic level and line-specific levels for each supported line of business.

Generic implementation code is declared at the generic level. Line-specific implementation code is declared at
the appropriate line-specific level.

• The job dimension has a generic level and job-specific levels for each supported job. Generic implementation
code is declared at the generic level. Job-specific implementation code is declared at the appropriate job-specific
level.

There is an additional set of impls for code that is specific to a single line of business and a single job.
PolicyCenter supports two styles of submission, quick quote and full quote. Therefore, there are typically two impls
for logic specific to submissions for a given line of business: one for LOB-specific quick quote logic and one for
LOB-specific full quote logic.
The following diagram depicts the structure for personal auto submissions. Gray shading indicates the class is
abstract.

Testing submissions on a new line of business 85

For more information on the Job/LOB Context API, see “The Line/Job Context API” on page 77.

Adding a new line of business for submission testing
The following is the high-level procedure for adding a new line of business for the Submission job. It is followed by
an example that reiterates each step in a detailed manner.
The code in the examples can be copied and pasted into Studio to provide a working LOB extension for submission.
Keep in mind that, in some cases, additional uses statements are required but are not present in the example code. If
Studio states it "cannot resolve symbol" for a given type, you can add a uses statement by clicking inside the type
name and pressing ALT + ENTER.

Add a line of business for submission

About this task

This procedure is followed by a detailed example with code that you can copy and paste into Studio to form working
quick quote and full quote impls for business auto.

Procedure

1. Create new scenarios and feature files that specify new steps.
• For more information on writing scenarios, see “Writing scenarios” on page 31.

2. If necessary, modify the ProductCode enum so that it includes the new line of business.
• You only need to do this once for each new line of business. If you have already done this for another job

type, you do not need to do it again for submissions.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

86 chapter 10: Testing submissions on a new line of business

3. If necessary, modify TagProcessorInfo so that it has a method to correctly set the product type for scenarios
specific to the new line of business.
• You only need to do this once for each new line of business. If you have already done this for another job

type, you do not need to do it again for submissions.
4. Create a new step class that provides definitions for the new step methods.

• For more information on creating step methods, see “Creating step methods” on page 49.
5. If necessary, create a new LOB-specific interface/impl pair.

• You only need to do this once for each new line of business. If you have already done this for another job
type, you do not need to do it again for submissions.

6. Create a SubmissionContextImplBase for the new line of business.
7. Create a new impl for quick quote submissions.
8. Create a new impl for full quote submissions.
9. Bind the new impls to the parent interface.

Step 1: Creating submission scenarios that use new steps
Write new submission scenarios that contain new step methods.
The following text is an example of a new BA_Submission_Agent_Ext.feature file. It contains several new step
methods, including "Given a business auto policy".
@business_auto @submission
Feature: Submission

 As an agent, I want to create a submission for a new policy, quote the submission so that I can give the
policyholder
 a quote for their new policy request.

 Background:
 Given I am a user with the "Producer" role
 And an account of type "Person":
 | First name | Jack |
 | Last name | Clark |

 Scenario: Issue a quoted Business Auto submission
 Given a Business Auto submission
 And the job status is "Quoted"
 When I issue the policy
 Then the submission status should be "Bound"

For more information on creating scenarios, see “Writing scenarios” on page 31.

Step 2: Modifying ProductCode
If this is the first job type to support the new line of business, you must add an additional member to the
ProductCode enum. This step does not need to be repeated for additional job types that support the new line of
business.
The following text is an example of code that could be added to the ProductCode enum to add business auto.
...
BUSINESS_AUTO("BusinessAuto"),

Step 3: Modifying TagInfoProcessor
If this is the first job type to support the new line of business, you must modify TagProcessorInfo so that it can
assign the new line of business type to the policy data set that will be used for testing. This step does not need to be
repeated for additional job types that support the new line of business.
The following is example of code that could be added to the TagInfoProcessor class to add business auto.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Testing submissions on a new line of business 87

@Before(:value = {"@business_auto"})
function businessAuto() { setLine(ProductCode.BUSINESS_AUTO) }

Step 4: Creating new step methods
Create a new step file. The step file must:
• Provide step definitions for the new step methods.
• Inject the Context Factory

The following text is an example of a new BA_SubmissionSteps_Ext class.
package gw.cucumber.customer.steps.lob.ba

uses com.google.inject.Inject
uses cucumber.api.java.en.Given
uses gw.cucumber.context.api.ContextFactory
// additional uses statements may be needed

/**
 * Business Auto specific {@link Submission} job steps
 */
class BA_SubmissionSteps_Ext {

 @Inject
 var _contextFactory : ContextFactory

 @Given("^a Business Auto submission$")
 function aBusinessAutoSubmission() {
 _contextFactory.getSubmissionContext().createSubmissionSetup()
 }

}

Step 5: Creating an interface/impl pair for the new LOB
If you have not already done so, create an interface and an impl for the new LOB.

The interface for the new LOB

The interface must extend LineContext.
The following test is an example of a new BAContext_Ext interface. Provide signatures for the methods needed for
all tests of this line of business, regardless of the job being tested.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

88 chapter 10: Testing submissions on a new line of business

package gw.cucumber.customer.context.api.lob.ba

// additional uses statements may be needed

/**
 * Methods common to {@link BusinessAutoLine}.
 * These methods are common to {@link Job} subtypes, for example Submission, PolicyChange, etc.
 */
interface BAContext_Ext extends LineContext {

}

The impl for the new LOB

The impl must extend LineContextImplBase and implement the new interface.
For each method, Guidewire recommends writing initial implementations that simply throw an
UnsupportedOperationException. When the initial work is complete, you can test the structure by running a test
and verifying that this type of exception is thrown. Later, you can replace each implementation with actual code.
The following text is an example of a new BAContextImpl_Ext impl.
package gw.cucumber.customer.context.impl.smoketest.lob.ba

uses gw.cucumber.context.impl.smoketest.lob.LineContextImplBase
uses gw.cucumber.customer.context.api.lob.ba.BAContext_Ext
// additional uses statements may be needed

class BAContextImpl_Ext extends LineContextImplBase implements BAContext_Ext {

 override function removeLineLevelCoverage(covName : String) {
 throw new UnsupportedOperationException("Not yet implemented")
 }
}

Step 6: Creating a SubmissionContextImplBase for the new LOB
The submission job uses a structure with a parent ImplBase class and two child impls - one for quick quotes and one
for full quotes. This structure exists to appropriate share and isolate impl logic as needed. Logic that is relevant to
both types of submissions is declared in the parent ContextImplBase impl. Logic that is specific to either quick
quotes only or full quotes only is declared in the relevant child impl.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Testing submissions on a new line of business 89

The new SubmissionContextImplBase impl must:
• Be abstract
• Extend SubmissionContextImplBase
• Implement the new LOB interface

The following text is an example of a new BASubmissionContextImplBase_Ext impl.
package gw.cucumber.customer.context.impl.smoketest.lob.ba

uses gw.cucumber.context.impl.smoketest.job.submission.SubmissionContextImplBase
uses gw.cucumber.customer.context.api.lob.ba.BAContext_Ext
// additional uses statements may be needed

abstract class BASubmissionContextImplBase_Ext extends SubmissionContextImplBase implements BAContext_Ext {

 function createSubmissionSetup() {
 throw new UnsupportedOperationException("Not yet implemented")
 }
}

Step 7: Creating the new line/job impl for quick quotes

The new impl must:
• Extend the SubmissionContextImplBase for the new LOB
• Implement the new LOB interface
• Have a delegate object that represents the new LOB interface. In the base configuration impls, this object is

named _lineContextDelegate.
The following text is an example of a new BASubmissionContextQuickQuoteImpl_Ext impl.
package gw.cucumber.customer.context.impl.smoketest.lob.ba

uses com.google.inject.Inject

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

90 chapter 10: Testing submissions on a new line of business

uses gw.cucumber.customer.context.api.lob.ba.BAContext_Ext
// additional uses statements may be needed

class BASubmissionContextQuickQuoteImpl_Ext extends BASubmissionContextImplBase_Ext implements BAContext_Ext {

 @Inject delegate _lineContextDelegate represents BAContext_Ext

 protected override function createLOBSpecificDataSetup() {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function createABoundPolicy() {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function createABoundPolicy(skipIssuance : boolean) {
 throw new UnsupportedOperationException("Not yet implemented")
 }
}

Step 8: Creating the new line/job impl for full quotes

The new impl must:
• Extend the SubmissionContextImplBase for the new LOB
• Implement the new LOB interface
• Have a delegate object that represents the new LOB interface. In the base configuration, this object is named
_lineContextDelegate.

The following text is an example of a new BASubmissionContextFullQuoteImpl_Ext impl.
package gw.cucumber.customer.context.impl.smoketest.lob.ba

uses com.google.inject.Inject
uses gw.cucumber.customer.context.api.lob.ba.BAContext_Ext
// additional uses statements may be needed

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Testing submissions on a new line of business 91

class BASubmissionContextFullQuoteImpl_Ext extends BASubmissionContextImplBase_Ext implements BAContext_Ext {

 @Inject delegate _lineContextDelegate represents BAContext_Ext

 protected override function createLOBSpecificDataSetup() {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function createABoundPolicy() {
 throw new UnsupportedOperationException("Not yet implemented")
 }

 override function createABoundPolicy(skipIssuance : boolean) {
 throw new UnsupportedOperationException("Not yet implemented")
 }
}

Step 9: Binding the new impls to the parent interface
Modify PCRemoteSmokeTestHelperModule so that it binds the new impls to the parent interface using the relevant
product codes. This must be done at the line level as well as at the submission context levels.
The following text contains code that can be added to PCRemoteSmokeTestHelperModule to bind the line level
impl.
// Line specific contexts
...
bind(BAContext_Ext).to(BAContextImpl_Ext)

The following text contains code that can be added to PCRemoteSmokeTestHelperModule to bind the submission
context levels.
// Quick Quote Submission Contexts
...
quickQuoteSubmissionContexts.addBinding(ProductCode.BUSINESS_AUTO).to(BASubmissionContextQuickQuoteImpl_Ext)

// Full Quote Submission Contexts
...
fullQuoteSubmissionContexts.addBinding(ProductCode.BUSINESS_AUTO).to(BASubmissionContextFullQuoteImpl_Ext)

Running the first test
At this point, you can run the scenarios created in the first step. The scenario will fail because it will invoke a
method whose implementation simply throws an UnsupportedOperationException. But the test will not result in
an error. This ensures that you have the technical structure in place and you can begin to write the actual
implementation code.

Summary of best practices
To minimize upgrade conflicts, Guidewire recommends that you avoid making modifications to the base
configuration Behavior Testing Framework files. Instead, add your testing extensions to your own files. Exceptions
to this recommendation include the following files, which are singleton files and present minimal effort when
resolving upgrade conflicts:
• ContextFactory.gs

• ContextFactoryImpl.gs

• PCRemoteSmoketestHelperModule.gs

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

92 chapter 10: Testing submissions on a new line of business

To ensure that your customizations do not create any upgrade conflicts, Guidewire recommends the following:
• End all file names with an _Ext suffix.
• Create context API interfaces in gw.cucumber.customer.context.api.<approach>. The name of <approach>

identifies the technology used in the implementations, such as smoketest or rest.
• Create context API impls in gw.cucumber.customer.context.impl.
• For you initial scenario, implement the interface methods so that they throw an
UnsupportedOperationException. Once you have confirmed that the scenario fails and throw this exception,
you can replace impl methods with actual code as needed.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Testing submissions on a new line of business 93

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

94 chapter 10: Testing submissions on a new line of business

Part 3

Writing implementation code

The implementation code that you write for behavior tests uses the following types of classes:
• Data builders
• Data wrappers
• Transformers

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

chapter 11

Working with test data

The following topic identifies features used in Behavior Testing Framework to create and manipulate test data.

Test data overview
There are several features used in Behavior Testing Framework to create and manipulate test data. Some of these
features are part of Gosu and are not exclusive to Behavior Testing Framework. Other features are specific to
Behavior Testing Framework.

General testing functionality
Gosu has several features that are used to create and manipulate test data. The features are used by the Behavior
Testing Framework base configuration, but they are not exclusive to Behavior Testing Framework. They are
discussed in detail in other areas of the documentation.
Developers who intended to write implementation code for Behavior Testing Framework need to have a good
understanding of these features.

Test data builders

A test data builder is a Gosu class that can be used to build entity objects for testing purposes. Test data builders
simplify the work of creating and committing data for test purposes. For more information on using test data
builders, see “Using test data builders” on page 123. For more information on extending or creating test data
builders, see “Creating an entity builder” on page 132.

Database transactions and Gosu bundles

A database transaction is a set of one or more SQL steps that are processed as a unit. All statements in a transaction
must succeed before the transaction can be committed. If any one statement fails, the entire transaction is rolled
back.
A bundle is a Gosu object that is used to manage a database transaction. Within Gosu, you can manually create
bundles, add objects to bundles, and commit bundles. Gosu internally creates the appropriate SQL statements to
create and commit database transactions as needed.
For more information on Gosu bundles, refer to the Gosu Reference Guide topic on database transactions and
bundles.

Testing functionality specific to Behavior Testing Framework
There are also features used to create and manipulate test data that are specific to Behavior Testing Framework.

Working with test data 97

Developers who intended to write implementation code for Behavior Testing Framework need to have a good
understanding of these features as well.

Test data sets

A test data set is a set of data that is loaded into the application prior to the execution of any feature file of scenario.
A test data set typically provides enough administration and business data to make the application sufficient robust
for behavior testing.
For example, suppose that you want to test assignment behavior for an activity. To test this behavior, you may need a
certain number of groups and users to ensure that each activity is assigned to an appropriate group and user.
In the base configuration of Behavior Testing Framework, the test data set is the PolicyCenter "small" sample data.
Customers can configure Behavior Testing Framework to use a custom test data set as needed.

Data wrappers

A data wrapper is an object that stores information needed by multiple step methods or impl methods. Data wrapper
objects are injected into various step classes and impl classes. Whenever a data wrapper is injected into a class, the
methods of that class can:
• Retrieve information from the data wrapper object, even though the data wrapper object is not explicitly passed

to the method as an input parameter.
• Put information into the data wrapper, even though the data wrapper object is not explicitly returned by the

method as a return value.
Data wrappers simplify code by providing a mechanism for methods to exchange information within a single
scenario without explicitly passing parameter or calling methods on other objects.
For more information, see “Data wrappers” on page 98.

The DataSetup class

The DataSetup classes provide methods that simplify the ability to use a single builder across multiple impl
methods. They also provide methods to enhance some of the platform test data builders.
For more information, see “The DataSetup class” on page 100.

Transformers

Behavior Testing Framework provides a set of Transformer classes. Each class has a transform method that
simplifies and standardizes the transformation of String values into some other type of value, such as typelist values
or monetary values.
For more information, see “Transformers” on page 102.

Data wrappers
Data wrappers overview

Within object-oriented programming, a method is a procedure that exists on an object and that can be called by other
objects and processes to execute a particular action. In traditional object-oriented programming, a method is not
universally aware of all of the application data. It typically has access only to data stored in its object, data that it
gets by calling methods on other objects, or data that is passed to it as an input parameter.
This style of strict information exchange is problematic for Behavior Testing Framework scenarios. A scenario can
consist of several steps. Each step maps to a step method which, in turn, calls an impl method in one of the context
APIs. Steps are intended to be usable in any combination that makes sense from a business perspective, regardless of
which classes contain the impl methods that execute the code. Whenever a given method is called, there is no
guarantee which methods were executed before it, and which methods will be executed after it. If Behavior Testing
Framework followed a strict data exchange paradigm, every method would need to send and received a large
number of values to enable all the possible permutations of methods.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

98 chapter 11: Working with test data

To simplify the exchange of information, Behavior Testing Framework uses a set of injected data wrapper objects. A
data wrapper is an object that stores information needed by multiple step methods or impl methods. Data wrapper
objects are injected into various step classes and impl classes. Whenever a data wrapper is injected into a class, the
methods of that class can:
• Retrieve information from the data wrapper object, even though the data wrapper object is not explicitly passed

to the method as an input parameter.
• Put information into the data wrapper, even though the data wrapper object is not explicitly returned by the

method as a return value.
For example, one of the data wrapper objects is the _currentUser object. This object is a data wrapper that wraps a
String value. The String value stores the name of the user that will log onto PolicyCenter and interact with the user
interface. When the object is injected into a class, every method in the class can access the object. The
_currentUser object makes it easier to share the name of the active user across every method in any class that
needs this information.
In the base configuration, the scope of each data wrapper is a single scenario. When the execution of a given
scenario is complete, all data wrappers are discarded. The next scenario will use a new set of data wrappers.
Data wrappers are used extensively in Behavior Testing Framework for BillingCenter and ClaimCenter. They are
used minimally in Behavior Testing Framework for PolicyCenter and ContactManager.

The datawrapper class
All data wrapper objects are created as instances of gw.cucumber.testdata.datawrapper.
The datawrapper class includes the @ScopedScenario annotation. This is a Guice annotation that tells Behavior
Testing Framework to create exactly one instance of the class when the scenario is started, to make the instance
available throughout the running of the scenario, and then to discard the instance when the scenario is complete.
This annotation both ensures the object is available throughout the entire scenario and prevents the object from
interfering with subsequent scenarios.

Using data wrapper objects
Injecting a data wrapper object

Data wrapper objects must be injected into a class in order to make the object available to the class's methods.
Data wrapper objects are injected into classes using the following syntax:

@Inject var objName : DataWrapper<objType>

where:
• objName is the object name.
• objType is the object type.

For example:
@Inject
private var _currentUser : DataWrapper<String>

Interacting with a data wrapper object

Once a data wrapper object has been injected into a class, all of the methods can interact with it.
For example, the following method comes from the CucumberStepBase class:
01 protected var _defaultUser : String = "aapplegate"
02
03 property set CurrentUser(username : String) {
04 _currentUser.set(username)
05 }
06
07 property get CurrentUser() : String {
08 if (_currentUser.get() == null) {
09 CurrentUser = _defaultUser

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Working with test data 99

10 }
11 return _currentUser.get() as String
12 }

Line 1 defines a _defaultUser String, which is set to "aapplegate".
Lines 3 to 5 define a setter for the CurrentUser property, which simply sets the _currentUser object.
Lines 5 through 12 define a getter for the CurrentUser property. The intention of this getter is to always provide a
non-null value. If _currentUser has been set to a non-null value by some other method, this method returns that
value. Otherwise, this method sets _currentObject to the default user's name (which, based on line 1, is
aapplegate) and then returns that name.

Data wrapper objects in the base configuration
The base configuration makes use of the following data wrapper objects:
• _currentUser : DataWrapper<String>

ContactManager uses:
• _StringWrapper : DataWrapper<String>

Behavior Testing Framework also includes two objects that are not implemented using the DataWrapper class, but
otherwise function as data wrapping objects. They both contain information that may be relevant to multiple impl
methods. They are both injected into CucumberStepBase , and are therefore available to all methods in
CucumberStepBase and its child class.
• _scenarioInfoProvider : ScenarioInfoProvider

• _dataTableRepository : DataTableRepository

The DataSetup class
Scenario-specific test data

When a test data object is created for a specific scenario, the scenario may specify values that the object must have.
For example, consider the following scenario:
When I create an activity
And the activity priority is "Urgent"
And the activity is due in "7" days
And I assign the activity using automated assignment
Then the activity is assigned to my supervisor

An activity must be created specifically for this scenario. The activity's priority must be Urgent, and the activity's
due date must be 7 days from the current date.
Scenario-specific test data is typically created using test data builders. For more information on using test data
builders, see “Using test data builders” on page 123.

Mapping impl code to modular steps
Suppose the activity in the previous scenario is created using the following code:
01 var testActivity = ActivityBuilder()
02 .withPriority(Priority.TC_URGENT)
03 .withDueInDaysFromNow(7)
04 .create(bundleObj)

The impl code appears as a single block. However, the impl code may need to spread across several methods. This is
because scenario steps are designed to be usable in a variety of combinations. For example, some activity scenarios
may specify the activity priority, but others may not. Therefore, each line of code must be assigned to a different
method. The following table lists the scenario steps for the previous example and the impl methods that could be
created to execute each step.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

100 chapter 11: Working with test data

Scenario step Impl methods

When I create an activity function createActivity() {
 ...
 var testActivity = ActivityBuilder()
 ...
}

And the activity priority is "Urgent" function setActivityPriority() {
 ...
 .withPriority(Priority.TC_URGENT)
 ...
}

And the activity is due in "7" days function setActivityDueDate() {
 ...
 .withDueInDaysFromNow(7)
 ...
}

 ...
 .create(bundleObj)
 ...

And I assign the activity using automated assignment function assignActivityUsingRules() {
 ...
 testActivity.autoAssign()
 ...
}

Then the activity is assigned to my supervisor (not relevant to the creation of test data)

The modularity of scenario steps can impose a requirement on impl methods. In some cases, multiple impl methods
must share a common builder. Furthermore, the object must not be created from the builder until after all of the set-
up values have been specified.

The DataSetup hierarchy
The DataSetup hierarchy consists of a series of classes. There is a parent DataSetup class in gw.cucumber.setup .
This has a set of child classes, as shown below:
• AccountDataSetup
• JobDataSetup

◦ SubmissionDataSetup
▪ HOPSubmissionDataSetup
▪ PASubmissionDataSetup
▪ WCSubmissionDataSetup

◦ NonSubmissionDataSetup
▪ CancellationDataSetup
▪ IssuanceDataSetup
▪ PolicyChangeDataSetup
▪ ReinstatementDataSetup
▪ RenewalDataSetup
▪ RewriteDataSetup

These classes provide methods to simplify the sharing of builders across different impl methods. For example,
PASubmissionDataSetup has the following provideDefaults method:
01 override function provideDefaults() : PASubmissionBuilder {
02 provideDefaultDriver()

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Working with test data 101

03 provideDefaultVehicle()
04 provideDefaultCoverages()
05 return Builder
06 }

Line 1 declares the method. Note that there are no input parameters. Also note that it returns a value of type
PASubmissionBuilder.
Lines 2 through 4 execute methods that provide default objects for the submission.
Line 5 returns the PASubmissionBuilder. The builder now has values for a default driver, vehicle, and coverages.
But, the actual PASubmission object has not yet been created.

Enhancements to the platform builders
Some of the DataSetup classes also provide additional methods to enhance some of platform test data builders. For
example, PASubmissionDataSetup is a DataSetup class that enhances PASubmissionBuilder by providing the
following methods:
• provideDefaultCoverages() - Sets specific deductibles to prevent the creation of underwriting issues.
• provideDefaultDriver() - If not already provided, provide a default driver.
• provideDefaultVehicle() - If not already provided, provide a default vehicle with an existing driver.
• withDriverAge(age) - Add a driver having the given age to the builder. A driver under the age of 25 will cause

an underwriting rule to execute.
• withDriver(PersonBuilder) - Add a driver with the given PersonBuilder to the submission.
• withVehicleGarageState(State) - Add a vehicle having the given garage state.
• withVehicle(price, state, PolicyDriverBuilder) - Add a vehicle with the given price, given state, and

given driver to the submission.

Transformers
Behavior Testing Framework provides a set of Transformer classes. Each class has a transform method that
simplifies and standardizes the transformation of String values into some other type of value. They are all declared
in the gtest.gw.transformer package.

Base configuration transformers

The base configuration provides the following classes:
CancelOptionTransformer

Transforms one of the following Strings into a corresponding display key. This is used to simplify code that must
specify a specific drop-down menu option in the user interface.

• The method expects the input String to be one of the following:
◦ "Cancel Now"

◦ "Cancel Policy"

CloseOptionTransformer
Transforms one of the following Strings into a corresponding display key. This is used to simplify code that must
specify a specific drop-down menu option in the user interface.

• The method expects the input String to be one of the following:
◦ "Not-Taken"

◦ "Decline"

◦ "Withdraw Transaction"

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

102 chapter 11: Working with test data

ConflictOverideTransformer
Transforms one of the following Strings into a corresponding display key. This is used to simplify code that must
specify a specific drop-down menu option in the user interface.

• The method expects the input String to be one of the following:
◦ "Override None"

◦ "Override All"

DateTransformer
Transforms a String into a date value.

• You can optionally pass a second parameter, a date value pattern, to the method. If there is no second
parameter, the date pattern value defaults to "MM/dd/yyyy".

• The method does not parse the value leniently. In other words, the method uses strict parsing, which requires
a data format value to be an exact match to a know data format.

MonetaryAmountTransformer
Transforms a String into a monetary amount. The String is expected to have the format
<amount><space><currency>. For example, "100 USD" or "50 EUR". The transformer returns a monetary
amount whose amount is the given numeric value and whose currency is the given currency value.

TypelistTransformer
Transforms a String into a typekey. For example, it can convert the String "Urgent" into the typekey
Priority.TC_URGENT.

• The method returns the first typekey whose display name matches the input String, ignoring case.

Best practices for transformers

If you need to transform a String value and the base configuration provides a corresponding transformer, Guidewire
recommends you use the transformer. This ensures that similar values are being transformed in a consistent way.
If you need to transform a String value and the base configuration does not provide a corresponding transformer,
you may want to consider creating a transformer using an approach similar to the ones used in the base
configuration.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Working with test data 103

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

104 chapter 11: Working with test data

Part 4

Additional topics

As well as testing PolicyCenter, you can use Behavior Testing Framework to test ContactManager. The Behavior
Testing Framework in PolicyCenter does not support ContactManager. You install and use a separate instance of
Behavior Testing Framework for ContactManager.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

chapter 12

Behavior Testing Framework for
ContactManager

Installing Behavior Testing Framework for ContactManager
Guidewire provides the Behavior Testing Framework extension pack in a compressed file. You must extract the
contents of this compressed file. The following directions refer to the extracted contents as the "extracted directory".

Note: Each release of Behavior Testing Framework supports one or more specific versions of the core
application. You must ensure that the version of Behavior Testing Framework is compatible with your
version of the core application. To determine the versions of the core application that are compatible
with a given version of Behavior Testing Framework, refer to the Behavior Testing Framework release
notes.

Install Behavior Testing Framework for ContactManager

Procedure

1. Extract the Behavior Testing Framework distribution file.
• The distribution file is named cm-isbtf.zip.
• The distribution file is located in the core product's isbtf subdirectory.

2. Install the framework files.
a. In the extracted directory, navigate to the framework directory. This directory contains a modules

directory.
b. Merge the modules directory into the ContactManager directory.
c. If messages appear that ask whether you want to merge modules and any other directories, select the

option that merges the directory.
3. Enable code generation of the native page model. This lets Behavior Testing Framework interact with PCF

elements and screens.
a. In the ContactManager directory, open the gradle.properties file in a text editor.
b. Locate the isPcfTestCodegenEnabled property and set its value to true.
c. Save and close the file.

Behavior Testing Framework for ContactManager 107

4. Add a command for running a Cucumber test suite to the build.gradle file.
a. In the ContactManager directory, navigate to the modules/configuration directory.
b. Open both the build.gradle file and the build.gradle_isbtf file in a text editor.
c. In the build.gradle_isbtf file, locate the line that contains the following text:

/** ISBTF: ONLY MERGE THE LINE BELOW */

d. Copy the line between the /** ISBTF: ONLY MERGE THE LINE BELOW */ and /** ISBTF: ONLY MERGE
THE LINE ABOVE */ lines.

e. Paste the copied line at the end of the build.gradle file.
f. Save and close the build.gradle file.
g. Close the build.gradle_isbtf file.

5. Some files in the PolicyCenter refer to generated PCFs. If the generated files do not exist, the application will
not start. To ensure the files exist:
a. Open Guidewire Studio.
b. Click Codegen→Generate Page Configuration Classes. When the class generation is complete, Studio

shows a "Page configuration codegen done..." message in the lower left corner.

Install the behavior testing example
Procedure

1. In the extracted directory that you created in “Install Behavior Testing Framework for ContactManager” on
page 107, navigate to the example directory. This directory contains a modules directory.

2. Merge the modules directory to the ContactManager directory.
3. If messages appear that ask whether you want to merge the modules and any other directories, select the

option that merges the directory.
4. If other messages that ask whether you want to replace existing files appear, select the options that replace the

existing files.

Verify the Behavior Testing Framework for ContactManager installation
About this task

Check that you installed the framework correctly. You can do this by: (1) verifying that the appropriate directories
and files have been added, (2) running a base configuration feature file, and (3) running a base configuration suite.
The scenarios provided in Behavior Testing Framework will pass when executed against a stand-alone base
configuration instance of ContactManager. If the instance has been integrated with other Guidewire applications or
configured, some tests may not pass.

Procedure

1. Open Guidewire Studio.
2. Optionally verify that the following directories and files exist:

• In configuration/gsrc/gw/api/test, an ABSmokeTestClassBase.
• A configuration/gsrc/gw/smoketest.pl directory.
• A configuration/gtest/gw/cucumber directory.
• A configuration/gtest/gw/enhancement directory.
• In configuration/gtest/gw/suites, an ABExampleSmokeSuite file.
• A configuration/gtest/gw/smoketest directory.
• In configuration/res/cucumber, a DuplicateContactsBatchExample.feature file.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

108 chapter 12: Behavior Testing Framework for ContactManager

3. Test a base configuration feature file.
The feature file assumes that ContactManager has not been configured. When run on a base configuration of
ContactManager, all scenarios in the feature file will pass. If ContactManager has been configured, one or
more scenarios may fail.
a. Navigate to configuration/res/cucumber.
b. Right-click the DuplicateContactsBatchExample.feature file, and then click Run 'Feature:

DuplicateContactsBatchExample'.
Studio opens a Run Feature <FeatureName> tab. The left pane contains icons that identify the tests that pass or
fail. The right pane contains a console with the server output during testing.

4. Test a base configuration suite.
A suite is a collection of feature files that are executed together. The suite assumes that ContactManager has
not been configured. When run on a base configuration of ContactManager, all scenarios in the suite will pass.
If ContactManager has been configured, one or more scenarios may fail.
There is a known issue with Behavior Testing Framework that prevents a test suite from running if there is a
running test server. As a workaround, if there is a running test server, stop it before executing the following
steps.
a. Navigate to configuration/gtest/gw/suites.
b. Right-click the ABExampleCucumberSuite file, and then click Run 'ABExampleCucumberSuite'.
Studio opens a Run <SuiteName> tab. The left pane contains icons that identify the tests that pass or fail. The
right pane contains a console with the server output during testing.

Resolving errors that occur during verification
Errors that occur when executing a test suite

The following table lists errors that you might see when executing a suite, as well as possible causes and recommend
fixes.

Error message Possible cause Suggested fix

Studio throws an ArrayIndexOutOfBounds
exception

The test server might already be
running.

Stop the test server before executing
the file.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Behavior Testing Framework for ContactManager 109

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

110 chapter 12: Behavior Testing Framework for ContactManager

Part 5

Platform-level testing functionality

Platform-level testing functionality includes the GUnit test framework and classes that are available to that
framework and to the Behavior Testing Framework. These classes support building data that the testing classes use.
Other Gosu classes and interfaces support testing PCF files.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

chapter 13

GUnit Test Framework

PolicyCenter provides many integration points for you to write Gosu configuration code as new classes, extensions,
interface implementations, expressions in PCF files, and so on. To ensure that your Gosu configuration code
performs the functionality that you require, you can write a set of test classes to exercise that code.
The GUnit Test Framework provides an environment that supports writing and running the tests for your Gosu
configuration code.
Tests are written in Gosu. You can execute these tests from the command prompt to include the tests in an automated
continuous integration work flow. You can also execute these tests from Guidewire Studio.

Creating a framework test
The GUnit Test Framework provides the following base classes to support different types of tests.
PCServerTestClassBase

Base class for tests that require a running server
PCUnitTestClassBase

Base class for tests that do not need the services that by a running server provides
A test class extends one of the base classes. The test class name must end with the suffix Test, such as
MySampleTest. The base class implementation of the framework's setUp method tests for this condition and throws
an IllegalStateException if this test fails.
Store all test class files in the Studio modules/configuration/gtest directory hierarchy. You can create new
subdirectories in the hierarchy to organize test classes for your convenience.
Optionally, the @Suites annotation can be specified on the test class. The @Suites annotation accepts a unique
String argument. All the test classes in a particular suite must specify the same @Suites annotation. An associated
suite class also references the suite's String value.
@Suites("UniqueSuiteName")
class MyTest extends PCUnitTestClassBase {
 ...
}

The following sample source classes demonstrate the use of the @Suites annotation.
• The MySuiteNames class defines a string constant called SAMPLE_SUITE_NAME.

// ========== File: MySuiteNames.gs ==========
// Define suite name strings.
// Test and suite classes reference the same string to group the tests into the suite.
// A test class references the string in a @Suites annotation.

package doc.example

GUnit Test Framework 113

class MySuiteNames {

 public static final var SAMPLE_SUITE_NAME : String = "AnyUniqueString_1"
 // ... Define other suite-name strings here
}

• The MyTest class definition uses a @Suites annotation that specifies the SAMPLE_SUITE_NAME constant. If other
test classes exist in the suite, each class must specify the same @Suites annotation.
// ========== File: MyTest.gs ==========
// Implement test class

package doc.example

uses gw.testharness.v3.Suites
uses gw.api.test.PCUnitTestClassBase

@Suites(MySuiteNames.SAMPLE_SUITE_NAME)
class MyTest extends PCUnitTestClassBase {
 ...
}

• The MySuiteClass class is a suite class that references SAMPLE_SUITE_NAME.
// ========== File: MySuiteClass.gs ==========
// Implement suite class

package doc.example

class MySuiteClass {
 // References MySuiteNames.SAMPLE_SUITE_NAME.
 // All test classes with a @Suites annotation that references SAMPLE_SUITE_NAME are included in the suite.
 // Details of implementing the suite class are described in another topic.

 static function suite() : Test {
 return new SuiteBuilder(PCUnitTestClassBase)
 .withSuiteName(MySuiteNames.SAMPLE_SUITE_NAME)
 .build()
 }
}

The @Suites annotation is optional. Similarly, a suite class does not need to reference a unique suite name. A suite
class that does not reference a suite name includes all the test classes in the package that do not specify a @Suites
annotation. This catch-all style of suite grouping can be useful early in the development cycle when only a few tests
exist and logical criteria for grouping them into suites are not yet evident.
Each test class provides the following Gosu constructors.
construct()
construct(name : String)

The name of a framework test method must begin with the string test as in testAddNumbers. When running the
individual tests in a test class, the framework executes each method that begins with the string test.
The following code illustrates the minimal skeletal structure of a test class that extends the
PCServerTestClassBase class.
class MyTest extends PCServerTestClassBase {

 construct(testName : String) {
 super(testName)
 ...
 }

 function testBasicSystemCheck() {
 ...
 }

 function testAnotherServerTest() {
 ...
 }

 // Other class methods

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

114 chapter 13: GUnit Test Framework

 ...
}

Core functions of the test framework base classes
The base classes of the GUnit Test Framework provide core functions like setUp, beforeMethod, afterMethod, and
tearDown that define the basic skeletal structure of a test. The core functions are called by the framework as it
processes the individual tests in a test class and test suite.
This section presents the core functions in the order in which the framework executes them when running a series of
tests in a test class and test suite. The following pseudocode illustrates the execution order of the core functions.
for each test class in a test suite {
 construct()
 beforeClass()

 for each test in a test class {
 setUp()
 beforeMethod()

 // Actual test method, such as testCheckSystem()

 afterMethod()
 tearDown()
 }

 afterClass()
}

Constructors

construct()
construct(name : String)

The name property is optional and not used by the framework. A test or test suite can use the name to identify a
particular test object. If the constructor does not initialize the name, you can set its value by calling the object's
setName method.

Method: beforeClass

function beforeClass() : void

The beforeClass method is executed once, before running any of the test methods that the test class defines. In a
test suite with multiple test classes, each test class's beforeClass method is executed immediately before running
the tests in the class.
Do not create test instance variables in the beforeClass method because the variables would exist only for the first
test that runs. Instead, create instance variables in the beforeMethod method.
override function beforeClass() {
 super.beforeClass()
 ...
}

Method: setUp

final function setUp() : void

The setUp method is executed before running each test method that the test class defines. The method typically
configures the test context and creates any data objects that the test requires.
A test class can overload the setUp method, but cannot override it.
In the base class implementation, if the test object's class name does not end with the string Test, an
IllegalStateException is thrown.
function setUp(someArg : int) {
 super.setUp()

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

GUnit Test Framework 115

 ...
}

Method: beforeMethod

function beforeMethod() : void

The beforeMethod method is executed before running each test method that the test class defines.
override function beforeMethod() {
 super.beforeMethod()
 ...
}

Method: afterMethod

function afterMethod(possibleException : Throwable) : void

The afterMethod method is called after each test method completes its execution.
The base class implementation clears all instance variables of the completed test.
override function afterMethod(possibleException : Throwable) {
 super.afterMethod(possibleException)
 ...
}

Method: tearDown

final function tearDown() : void

The tearDown method is called after each test method completes its execution. The method typically performs
clean-up operations.
A test class can overload the tearDown method, but cannot override it.
function tearDown(someArg : int) {
 super.tearDown()
 ...
}

Method: afterClass

function afterClass() : void

The afterClass method is called after the completion of all tests in a test class.
override function afterClass() {
 super.afterClass()
 ...
}

Support functions for the test framework
The GUnit Test Framework provides several categories of support functions that tests can call to implement a test
operation.

Environment configuration methods for the test framework
The framework provides methods to configure the testing environment and return information about it.

Method: assert...

The framework provides static methods that assert whether a particular condition exists. Each method's name begins
with the prefix assert followed by the condition tested, as in assertEquals and assertNotZero.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

116 chapter 13: GUnit Test Framework

The framework supports all the methods defined by the Assert class in the Java JUnit unit testing framework. The
Assert class provides commonly used methods like assertEquals, assertTrue, and assertFalse. For a complete
list of supported methods, refer to the JUnit Assert class documentation.
In addition, the framework extends the Assert class methods with methods applicable to testing InsuranceSuite
configuration code. Example methods include assertBigDecimalEquals and assertDateEquals. The framework
assert methods are defined in the PLAssertions class, which is included in the gw.testharness.v3 package.
The following table groups the methods in the PLAssertions class into general categories. For complete details,
refer to the PLAssertions class documentation.

Category Methods

BigDecimal assertBigDecimalEquals, assertBigDecimalNotEquals, assertBigDecimalIsZero,
assertBigDecimalIsNotZero

Collection assertEmpty, assertSize, assertCollectionContains, assertCollectionDoesNotContain,
CollectionEquals, CollectionSame

Equals assertEquals, assertEqualsIgnoreCase, assertEqualsIgnoreLineEnding,
assertEqualsIgnoreWhiteSpace, assertEqualsReplaceAll, assertEqualsUnordered,
assertComparesEqual

General purpose assertDateEquals, assertFalseFor, assertTrueWithin, assertGreaterThan, assertZero,
assertNotZero

Hashtable assertHashtableContains, assertHashtableContainsKey

Helper assertCollection, assertList, assertSet, assertThat

Iterator assertIteratorEquals, assertIteratorSame

List assertListEquals, assertListSame, findObjectInListUsingComparator

Miscellaneous assertAssignable, assertExceptionThrown, assertExceptionThrownWithMessage

Object assertArrayContains, assertArrayDoesNotContain, assertLength

Method: registerPlugin

registerPlugin<T extends InternalPlugin>(pluginInterface : Class<T>, implementation : T) : void

Call the registerPlugin method to register a replacement plugin implementation to use during the class's testing
operations. The method is available only in test classes that extend PCServerTestClassBase.
The pluginInterface argument specifies the plugin to be replaced. The implementation argument references the
plugin implementation instance to use during the testing operations.
The original plugin implementation is restored at the completion of the class's tests by the base class implementation
of the afterClass method.
class MySampleTest extends PCServerTestClassBase {

 // ... Constructors, other methods, and so on.

 // *** Replacement plugin implementation for testing operations
 class MyReplacementPlugin implements IGenericPlugin {

 // ... Constructors, overrides of plugin methods, and so on.
 }

 // *** Function to test my configuration code
 // The replaced plugin is subsequently restored automatically by the afterClass() method
 function testMyConfigCode() {

 registerPlugin(IGenericPlugin, new MyReplacementPlugin()) // Register replacement plugin for testing operations

 // ... Perform tests here.
 }

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

GUnit Test Framework 117

 // *** Another test function
 // At the function's completion, restore the original plugin; don't wait until afterClass()
 function testMyConfigCode02() {
 var savedPlugin : IGenericPlugin

 savedPlugin = Plugins.get(IGenericPlugin.class) // Save original plugin implementation
 registerPlugin(IGenericPlugin, new MyReplacementPlugin()) // Register replacement plugin

 // ... Perform tests here.

 registerPlugin(IGenericPlugin, savedPlugin) // Restore original plugin
 }
}

Method: setUpMutableSystemClock

setUpMutableSystemClock() : void

The setUpMutableSystemClock method establishes a temporary system clock available for testing purposes. Test
code can adjust the time of the temporary clock without affecting the actual system clock. The method is available
only in test classes that extend PCServerTestClassBase.
Call the setUpMutableSystemClock method in the test class's beforeClass method. The temporary clock is
initialized to the current system day and time. The original system clock is automatically restored by the base class
implementation's afterClass method.
The ChangesCurrentTimeUtil class provides static methods to set and advance the temporary clock. In general,
time is advanced to the future. Reversing time to the past can result in unexpected application behavior and is
strongly discouraged.
setCurrentTime(test : TestCase, timeInMillis : long) : void
incCurrentTime(test : TestCase, deltaInMillis : long) : void

The setCurrentTime method sets the temporary system clock to a specified time. The incCurrentTime method
increments the clock by a specified number of milliseconds.
The test argument references the test class. The timeInMillis argument specifies the time in milliseconds to
assign to the clock. The deltaInMillis argument specifies the number of milliseconds to advance the clock.
// Set the temporary system clock to a future date
ChangesCurrentTimeUtil.setCurrentTime(this, mySampleCalendar.getSampleEventDateTime())

// Advance the clock by one day
var ONE_DAY_IN_MILLISECONDS = 1000L*60L*60L*24L
ChangesCurrentTimeUtil.incCurrentTime(this, ONE_DAY_IN_MILLISECONDS)

Property: TestResultsDir

TestResultsDir : File

The TestResultsDir property is a read-only property. This java.io.File object references the directory that
stores the test results.

Logging functions for the test framework
The framework provides functions that support logging. The logging functions are based on the org.slf4j.Logger
object. Refer to the SLF4J (Simple Logging Facade for Java) documentation for details.

Method: addLoggingAppender

addLoggingAppender(logger : Logger, appender : LogAppender) : void

The addLoggingAppender method adds a logging output destination to a Logger object.
The logger argument references the Logger object to receive the new output destination. The appender argument
specifies the new logging output destination. The LogAppender object is based on Log4j. Refer to the Log4J
documentation for details on using an appender to define a new output destination.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

118 chapter 13: GUnit Test Framework

Method: getLogger

getLogger() : Logger

The getLogger method returns the org.slf4j.Logger object used by the test framework for logging.

Method: setLoggerLevel

setLoggerLevel(logger : Logger, level : LogLevel) : void

The setLoggerLevel method sets the types of messages to log.
The logger argument specifies the Logger object used by the test framework. The object can be retrieved by the
getLogger method.
The level argument specifies the log level. The following hierarchical levels are supported. Each level includes the
levels below it. For example, the INFO level will log messages of the types INFO, WARN, and ERROR.
• ALL - Log all message types.
• TRACE - Verbose logging mode.
• DEBUG - Log debugging messages.
• INFO - Log informational messages about executing operations. INFO is the default log level.
• WARN - Log potential problems.
• ERROR - Log error conditions.
• OFF - Disable logging.
uses gw.logging.LogLevel

setLoggerLevel(getLogger(), LogLevel.DEBUG)

A test can log a message by calling the Logger method related to the relevant log level. Refer to the Logger
documentation of the SLF4J documentation for details.
class MySampleServerTest extends PCServerTestClassBase {

 function testMySampleServerTest() {
 Logger.info("Running sample server test") // Log a message at the INFO level

 // ... Perform test

 // ... Log messages at other levels
 Logger.debug("Debug information") // Log a message at the DEBUG level
 Logger.error("Error information") // Log a message at the ERROR level
 Logger.trace("Details about the test") // Log a message at the TRACE level
 Logger.warn("Potential issue in the test") // Log a message at the WARN level
 }
}

Method: startLogCapture

startLogCapture(logger : Logger) : CapturingLogger

The startLogCapture method creates a new logging object that captures subsequent logging events.
The method returns a CapturingLogger object.
uses gw.testharness.CapturingLogger

class MySampleServerTest extends PCServerTestClassBase {

 function testMySampleServerTest() {
 var logger : CapturingLogger

 try {
 logger = startLogCapture(getLogger()) // Start capturing the test logger

 assertThat(logger.getCapturedEvents()) // Verify that log is initially empty
 .as("Log should be initially empty")
 .isEmpty()

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

GUnit Test Framework 119

 // ... Perform test here

 assertThat(logger.getCapturedEvents()) // Verify that log is no longer empty
 .as("Should have logged messages")
 .isNotEmpty()
 }
}

General-purpose methods for the test framework
The framework provides several general-purpose methods.

Method: getName

getName() : String

The getName method retrieves the value of the object's name property.
The name property can be assigned in the object's constructor or by calling the setName method.

Method: getUniqueSuffixForTest

getUniqueSuffixForTest() : String

The getUniqueSuffixForTest method generates a globally unique string. Possible uses of the string include
avoidance of duplicate keys and as a suffix to the test object's name property.
mySampleTest01.setName("MySampleTest" + mySampleTest01.getUniqueSuffixForTest())
mySampleTest02.setName("MySampleTest" + mySampleTest02.getUniqueSuffixForTest())

Method: setName

setName(name : String) : void

The setName method assigns the value of the name argument to the object's name property.

Method: toString

toString() : String

The toString method returns a string representation of the test object.
In the base class implementation, the object's string representation is constructed by concatenating the following
values.
• The object's name property
• The object's package name
• The object's class name

The format of the concatenated string is name(package.class).

Creating a framework test suite
Multiple test classes can be combined to form a single test suite. Each test class in a suite must be based on the same
class type. For example, MyServerTestSuite might consist of the test classes MyServerTestOne,
MyServerTestTwo, and MyServerTestThree, where each class is based on PCServerTestClassBase.
A test suite is created by defining a suite class. The suite class must define a static method called suite. The suite
method creates the test suite by using the SuiteBuilder class.
The SuiteBuilder class defines a constructor and the following methods.
withSuiteName

Accepts a String suite name argument. The generated suite will include all the test classes defined with a
@Suites annotation value that matches the suite name argument. To create a suite that includes all the test

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

120 chapter 13: GUnit Test Framework

classes that were defined without a @Suites annotation, do not call the withSuiteName method when building
the SuiteBuilder instance.

build
Accepts no arguments. Creates the test suite object.

The following suite class builds a suite that includes each test class that specified a @Suites annotation with the
SAMPLE_SUITE_NAME argument. Also, each test class in the suite extends the PCServerTestClassBase class.
package doc.example

uses gw.suites.MySuiteNames
uses gw.api.test.PCUnitTestClassBase
uses gw.api.test.SuiteBuilder
uses junit.framework.Test

class MySuiteClass {

 static function suite() : Test {
 return new SuiteBuilder(PCUnitTestClassBase)
 .withSuiteName(MySuiteNames.SAMPLE_SUITE_NAME)
 .build()
 }
}

The framework calls the suite method during normal framework processing. The method returns a JUnit-based
Test object. The Test object is managed by the framework and does not need to be manipulated by test code.

Running a test suite at the command prompt
To run a test suite, execute the following operations at the command prompt.
gwb compile
gwb runSuite -Dsuite=TestSuiteClassName {-Doption...}

The gwb compile command compiles the GUnit test and test suite classes.
The gwb runSuite command runs the tests in a specified test suite. The command accepts the following options.
Each option is prefixed by -D.

Option Description

suite Required. Fully-qualified suite class name, such as com.acme.MyTestSuite.
Example: -Dsuite=com.acme.ux.tests.UxTestSuite

dir.results Optional. Directory in which to store results. If a relative directory is specified, the location is relative to the
application's root directory.
The results file contents are in a format that can be processed by continuous integration systems.
Default: The /tmp directory.
Example: -Ddir.results=build/test-results

dir.temp Optional. Directory in which to store temporary test files. If a relative directory is specified, the location is
relative to the application's root directory.
Default: The /tmp directory.
Example: -Ddir.temp=build/test-temp

memory Optional. Maximum memory in MB to allocate to run tests.
Default: 768
Example: -Dmemory=2048

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

GUnit Test Framework 121

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

122 chapter 13: GUnit Test Framework

chapter 14

Using test data builders

Test data builders are Gosu classes that simplify the creation of test data objects. Test data builders are useful for
both Behavior Testing Framework scenarios and GUnit tests.

Overview of test data builders
Tests that verify application functionality often require objects to test against. For example, suppose you want to
write a test that verifies the logic for assigning an activity to a user in the correct group. In order to test this logic,
you must have at least one activity, one user, and one group. Furthermore, the state of these objects must be
appropriate for the test. For example, to test activity assignment, you might need to start with an activity that is
unassigned.
Theoretically, you could execute these tests using the approach taken to create objects in a production environment.
Within a test framework, this approach tends to be cumbersome for several reasons:
• Objects often have fields that are required at the database level. In a production environment, values must be

specified for these fields. However, within a test environment, many of these values may be irrelevant to a given
test. Setting these values increases the code length and can make the code harder to read.

• Objects may have values that are cumbersome to set, such as:
◦ A given object may require a parent object.
◦ A given field may need to have a value that is unique

• Objects in a production environment are tied to automatic application behaviors, such as pre-update rules or
messaging events. These behaviors can be irrelevant to testing and may throw errors for reasons irrelevant to
testing.

To simplify object creation for testing purposes, Guidewire provides test data builder. A test data builder is a class
that can be used to build objects for testing purposes. Test data builders provide the following benefits:
• All required fields have associated default values. When you create an object from a test data builder, you only

need to specify values for the fields relevant to the test. The class provides any required values not specified by
your code.

• Helper methods exist to simply the setting of more cumbersome values, such as:
◦ Required associated objects
◦ Fields whose values must be unique

• Objects created from test data builders do not trigger automatic application behaviors, such as pre-update rules.
For example, the following code uses a test data builder to create a test user object and then print values from that
object. Note that the FirstName value is specified in the code, but the LastName field is not. When the test user
object is created, the FirstName field is set as specified, and the LastName field is given a default value.

Using test data builders 123

var testUser = new UserContactBuilder()
 .withFirstName("Tom")
 .create()
print(testUser.FirstName)
print(testUser.LastName)

OUTPUT:
Tom
House 0006

Test data builder classes are also referred to as builders, data builders, and entity builders.
The base configuration provides test data builders for most frequently-used entities. They are declared in the
gw.api.databuilder package. If necessary, insurers can extend these test data builders. They can create their own
test data builders. For more information, see “Creating and extending test data builders” on page 131.

Test data builders focus only on fields required by the database

Test data builders are designed to create objects that have enough data to be saved to the database. There may be
circumstances where this is insufficient to meet the needs of a given test.
For example, suppose there is a test that requires an Account object to be shown in a specific user interface screen.
The screen has the Email field marked as required, even though this field is not required in the database. If you
create an Account object using a test data builder and do not provide an Email value, an exception may be thrown
when the object is tested in the user interface.
Similarly, suppose there is a test for Note objects that requires the Topic field to have a value. This field is not
required at the database level and is normally set by preupdate rules. Test data builders do not trigger preupdate
rules. Therefore, if you create a Note object using a test data builder and do not manually provide a value for the
Topic field , the test will fail.
When writing code that uses test data builders, keep in mind that each use case may require data beyond what is
strictly needed to save the object to the database. In these cases, you must write code the provides values for these
additional requirements.

Test data builders are not supported in production environments

Test data builders are available only in non-production environments. Objects creates from test data builder classes
bypass many application constraints and are therefore not appropriate for a production environment.

Note: Test data builder classes are intended for use in testing environments only. Guidewire does not
support their use in a production environments.

To enable test data builders, you must set the Enable Internal Debug Tools configuration parameter in config.xml
to true.

Creating objects using test data builders
The runWithNewBundle method

Within InsuranceSuite, a bundle is a set of objects that are committed to the database as a group. Bundles are
analogous to database transactions. Every object is created within the context of a bundle. The object is saved to the
database when the bundle is committed.
One of the most common methods used to interact with bundle is the gw.transaction.Transaction class's
runWithNewTransaction. This method has a signature that specifies a Gosu block and a specific user. The Gosu
block names a bundle and typically executes code that creates objects within that bundle. At the end of the block, the
bundle is inherently committed to the database. The commit is executed as the specified user.
The syntax for this usage of runWithNewTransaction is:
gw.transaction.Transaction.runWithNewBundle(\ bundleObject -> {
 // code that creates objects in bundleObj
} , "userName")

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

124 chapter 14: Using test data builders

For more information on runWithNewTransaction, refer to the section on bundles and database transactions in the
Gosu Reference Guide.

Creating test objects in runWithNewBundle

Code that creates test objects typically appears within the block of a runWithNewBundle call. The code typically has
the following structure:
• One line that declares a variable for the new object and calls the appropriate builder class
• Optionally, one or more lines that set values for the new object
• One line that creates the object

The following line of code demonstrates this three-part structure:
gw.transaction.Transaction.runWithNewBundle(\ bundleObj -> {
 var testUser = new UserContactBuilder()
 .withFirstName("Tom")
 .create(bundleObj)
} , "su")

• The first line calls runWithNewBundle and names the bundle bundleObj.
• The second line declares a new object whose name is testUser and whose type is UserContactBuilder.
• The third line sets the FirstName field on the new object.
• The fourth line creates the object in the bundleObj bundle.
• The final line ends the block, which inherently commits the bundle as the super user su.

The following sections provide more detail on how to declare the test object variable, set its values, and create the
object using those values.

Declaring the test object variable
The base configuration test data builder classes are declared in the gw.api.databuilder package. You can refer to
this package for a complete list of builders.
To declare a new test object variable from a test data builder, use the following syntax:
var testObj = new dataBuilderClass()

The gw.api.databuilder package must be either imported using a uses statement or included as part of the builder
class name. Both approaches are demonstrated in the following blocks of code:
uses gw.api.databuilder
var testUser = new UserContactBuilder()
...
var testUser = new gw.api.databuilder.UserContactBuilder()

Setting object values
Objects created from test data builders do not need to have any field values set. Every test data builder class
provides default values for all required fields, and they create any related and required objects as needed.
For example, the following line of code creates a test user, even though no values have been provided for the test
user:
var testUser = new UserContactBuilder()
 .create(bundleObj)

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Using test data builders 125

Specifying field values

You can specify values using methods within the test data builder class. These methods typically start with one of
the following words:
• withFieldName - These methods let you specify a value for a given field.

◦ For example, addressBuilder.withCountry(Country.TC_FR)
• asValue - These methods let you specify that the object has a given state. They can simplify code by not

requiring you to specify the correct field or value to set the state.
◦ For example, addressBuilder.asBusinessAddress()

• onForeignKeyName - These methods let you specify a parent object that is the owner of the new object.
◦ For example, policyBuilder.onAccount(testAccount)

When writing code that sets field values, the standard convention is to list each method on a separate, indented line
that starts with the dot and method name. This makes it easier to use the code completion feature within Studio,
improves the code's readability, and makes it easier to add additional lines.
The following code is an example of a test object that sets multiple field values and follows the standard convention
for code format.
var testBusinessAddress = new AddressBuilder()
 .withAddressLine1("123 Main Street")
 .withCity("San Francisco")
 .withState(State.TC_CA)
 .withPostalCode("94110")
 .withCountry(Country.TC_US)
 .asBusinessAddress()
 .create(bundleObj)

Specifying unique values

Some fields require a field value that is unique before the object can be committed to the database. For example,
person contacts have a TaxID field. This field must be a unique string value in the form XXX-XX-XXXX, where X
is a digit 0 through 9 and - is a literal hyphen (such as "123-45-6789").
The gw.api.databuilder.UniqueKeyGenerator class can be used to generate unique values. It has its own
sequence of integers and a get method. The get method has several child methods that return the next integer in the
sequence in various formats. The get method never uses the same integer twice. So, within the context of testing,
any two values generated from this method ought to be unique:
• nextID - returns a 13-character alphanumeric string that consists of 6 random letters, a hyphen, and the next

integer in the sequence as a 6-digit string with padded zeroes as needed.
• nextInteger - returns the next integer in the sequence
• nextKey - returns an 8-character alphanumeric string whose final characters are the next integer in the sequence

The following code is an example of executing each of these methods multiple times. Before this code was
executed, the integers up through 36 have already been used.
uses gw.api.databuilder.UniqueKeyGenerator

print ("Next ID: " + UniqueKeyGenerator.get().nextID())
print ("Next ID: " + UniqueKeyGenerator.get().nextID())
print ("Next int: " + UniqueKeyGenerator.get().nextInteger())
print ("Next int: " + UniqueKeyGenerator.get().nextInteger())
print ("Next key: " + UniqueKeyGenerator.get().nextKey())
print ("Next key: " + UniqueKeyGenerator.get().nextKey())

OUTPUT:
Next ID: QGJAJX-000037
Next ID: FUGZFL-000038
Next int: 39
Next int: 40
Next key: WBFMHN41
Next key: MVJCVB42

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

126 chapter 14: Using test data builders

The following code is an example of creating a user with a tax ID in the format XXX-XX-XXXX. The code appends
the last four digits of the next ID to the string "000-00-". To do this, it uses the substring method, starting with the
9th character (where 0 is the first character and 9 is the first of the last four characters).
gw.transaction.Transaction.runWithNewBundle(\ bundleObj -> {
 var testUser = new UserContactBuilder()
 .withFirstName("Tom")
 .withLastName("Thompson")
 .withTaxID("000-00-" + UniqueKeyGenerator.get().nextID().
 substring(9))
 .create(bundleObj)
 print(testUser.FirstName)
 print(testUser.LastName)
 print(testUser.TaxID)
} , "su")

OUTPUT:
Tom
Thompson
000-00-0043

Fields that cannot be set using methods

For every builder class, there may be fields whose values cannot be set using a withX, asX, or onX method. This
includes:
• Base configuration fields for which there is no related withX, asX, or onX method
• Fields added through configuration

You can extend a base configuration test data builder to add methods to it so that a given field's value can be set. For
more information, see “Creating and extending test data builders” on page 131.
Alternately, you can set the value after the object has been created. For example, suppose you extended the
UserContact entity by adding a RemoteEmployee_Ext Boolean field. There is no method in the base configuration to
set this field value. The following code shows an example of setting the field after the object has been created.
gw.transaction.Transaction.runWithNewBundle(\ bundleObj -> {
 var testUser = new UserContactBuilder()
 .withFirstName("Tom")
 .create(bundleObj)
 testUser.RemoteEmployee_Ext = true
} , "su")

Creating the object
Once you have specified the field values that are important to the test, you must create the object. Typically, this is
done using the test data builder's create method. For example, in the following code, the fourth line creates the
object.
gw.transaction.Transaction.runWithNewBundle(\ bundleObj -> {
 var testUser = new UserContactBuilder()
 .withFirstName("Tom")
 .create(bundleObj)
} , "su")

Which bundle is the object created in

The create method has multiple signatures. One of them is:
create(bundleObj)

This signature creates the object in the specified bundle. For test objects, Guidewire recommends using this
signature, as it gives you the ability to create the object in the bundle managed by runWithNewBundle. This bundle
is inherently committed at the end of the block.
There is another signature:
create()

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Using test data builders 127

This signature creates the object in the default bundle. The default bundle is a bundle that typically exists by default.
When objects are created without a specified bundle, they are created in the default bundle.
For test objects, Guidewire does not recommend using this signature. The default bundle is not inherently committed
at the end of the runWithNewBundle block. If you create objects in the default bundle, you must also manually
commit that bundle. Also, if other processes have added objects to the default bundle, committing the bundle can
lean to unexpected behaviors.

Creating multiple test objects from a template object
In some situations, a test may require a set of objects that have nearly identical settings. For example, there could be
a test that requires a set of activities that have the same type and priority.
You can create multiple test objects with the same values using a template object. A template object is an object
created from a test data builder class whose create method is never called. Instead, multiple objects are declared
and created from it.
To use a template object:
1. Declare the template object.
2. On the template object, set the values that need to be identical on each of the test objects.

• Do not execute the create method on the template object.
3. Create the test objects from the template object.

• Execute the create method on the test objects only.
The following code is an example of creating multiple activities from a template object. The type and priority fields
are set in the template object. Therefore, both activities have the same type and priority. However, each activity has a
distinct subject.
gw.transaction.Transaction.runWithNewBundle(\ bundleObj -> {
 var templateActivityBuilder = new gw.api.databuilder.ActivityBuilder()
 .withType(ActivityType.TC_GENERAL)
 .withPriority(Priority.TC_HIGH)

 var activity1 = templateActivityBuilder
 .withSubject("Test activity 1")
 .create(bundleObj)
 var activity2 = templateActivityBuilder
 .withSubject("Test activity 2")
 .create(bundleObj)
} , "su")

Creating related objects
For some tests, you may need an object that is related to a given object, such as an Address that is related to a
UserContact. There are two different ways the related object can be created and associated with the primary object.

Creating related objects using nested builders

Some test data builders have withX methods that take a nested builder as a parameter. For example, on the
UserContactBuilder class, the withAddress builder method has a signature that takes an AddressBuilder. This is
demonstrated in the following code example.
gw.transaction.Transaction.runWithNewBundle(\ bundleObj -> {
 var testUser = new UserContactBuilder()
 .withFirstName("Tom")
 .withLastName("Thompson")
 .withPrimaryAddress(new AddressBuilder()
 .withAddressLine1("123 Main Street")
 .withCity("San Francisco")
 .withState(State.TC_CA)
 .withPostalCode("94110")
 .withCountry(Country.TC_US)
 .asBusinessAddress()
 .create(bundleObj))
 .create(bundleObj)
} , "su")

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

128 chapter 14: Using test data builders

Note that the primary address is specified using a nested AddressBuilder. To make this clear, the AddressBuilder
code uses a second level of indentation.

Creating related objects manually

Some builders have withX methods that take an object as a parameter. For example, on the UserContactBuilder
class, the withAddress builder method takes has a signature that takes an Address object. This is demonstrated in
the following code example.
gw.transaction.Transaction.runWithNewBundle(\ bundleObj -> {
 var testBusinessAddress = new AddressBuilder()
 .withAddressLine1("123 Main Street")
 .withCity("San Francisco")
 .withState(State.TC_CA)
 .withPostalCode("94110")
 .withCountry(Country.TC_US)
 .asBusinessAddress()
 .create(bundleObj)
 var testUser = new UserContactBuilder()
 .withFirstName("Tom")
 .withLastName("Thompson")
 .withPrimaryAddress(testBusinessAddress)
 .create(bundleObj)
} , "su")

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Using test data builders 129

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

130 chapter 14: Using test data builders

chapter 15

Creating and extending test data
builders

Note: Guidewire does not recommend or support the use of classes that extend
gw.api.databuilder.DataBuilder or classes that reside in the gw.api.databuilder.* package in
a production environment. Guidewire provides GUnit as a development test facility only.

As you run tests against code, you need to run these test in the context of a known set of data objects. This set of
objects is generally known as a test fixture. You use Gosu entity builders to create the set of data objects to use in
testing.
Guidewire provides a number of entity “builders” as utility classes to quickly and concisely create objects (entities)
to use as test data. The PolicyCenter base configuration provides builders for the base entities (such as
PolicyBuilder, for example). However, if desired, you can extend the base DataBuilder class to create new or
extended entities. You can commit any test data that you create using builders to the test database using the
bundle.commit method.
For example, the following builder creates a new Person object with a FirstName property set to “Sean” and a
LastName property set to “Daniels”. It also adds the new object to the default test bundle.
var myPerson = new PersonBuilder()
 .withFirstName("Sean")
 .withLastName("Daniels")
 .create()

For readability, Guidewire recommends that you place each configuration method call on an indented separate line
starting with the dot. This makes code completion easier. It also makes it simpler to alter a line or paste a new line
into the middle of the chain or to comment out a line.
Gosu builders extend from the base class gw.api.databuilder.DataBuilder. To view a list of valid builder types
in Guidewire PolicyCenter, use the Studio code completion feature. Type gw.api.databuilder. in the Gosu editor
and Studio displays the list of available builders.

Package completion

As you create an entity builder, you must either use the full package path, or add a uses statement at the beginning
of the test file. However, in general, Guidewire recommends that you place the package path in a uses statement at
the beginning of the file.
uses gw.api.databuilder.AccountBuilder

@gw.testharness.ServerTest
class MyTest extends TestBase {

Creating and extending test data builders 131

 construct(testname : String) {
 super(testname)
 }
 ...
 function testSomething() {
 //perform some test
 var account = new AccountBuilder().create()
 }
 ...
}

Guidewire provides certain of the Builder classes in gw.api.builder.* and others in gw.api.databuilder.
Verify the package path as you create new builders.

Creating an entity builder
To create a new entity builder of a particular type, use the following syntax:
new TypeOfBuilder()

This creates a new builder of the specified type, with the Builder class setting various default properties on the
builder entity. Each entity builder provides different default property values depending on its particular
implementation. For example, to create (or build) a default address, use the following:
var address = new AddressBuilder()

To set specific properties to specific values, use the property configuration methods. The following are the types of
property configuration methods, each which serves a different purpose as indicated by the method’s initial word:

Initial word Indicates

on A link to a parent. For example, PolicyPeriod is on an Account, so the method is onAccount(Account
account).

as A property that holds only a single state. For example, asSmallBusiness or asAgencyBill.

with The single element or property to be set. For example, the following sets a FirstName property:
 withFirstName("Joe")

Use a DataBuilder.with(...) configuration method to add a single property or value to a builder object. For
example, the following Gosu code creates a new Address object and uses a number of with(...) methods to
initialize properties on the new object. It then uses an asType(...) method to set the address type.
var address = new AddressBuilder()
 .withAddressLine1(streetNumber + " Main St.")
 .withAddressLine2("Suite " + suiteNumber)
 .withCity("San Mateo")
 .withState("CA")
 .withPostalCode(postalCode)
 .asType(typeStr)
 ...

After you create a builder entity, you are responsible for writing that entity to the database as part of a transaction
bundle. In most cases, you must use one of the builder create methods to add the entity to a bundle. Which create
method one you choose depends on your purpose.
To complete the previous example, add a create method at the end.
var address = new AddressBuilder()
 .withAddressLine1(streetNumber + " Main St.")
 ...
 .create()

Builder create methods
The DataBuilder class provides the following create methods:

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

132 chapter 15: Creating and extending test data builders

builderObject.create(bundle)
builderObject.create()
builderObject.createAndCommit()

The following list describes these create methods.

Method Description

create() Creates an instance of this builder's entity type in the default bundle. This method does not commit the
bundle. Studio resets the default bundle before every test class and method.

createAndCommit() Creates an instance of this builder’s entity type in the default bundle, and performs a commit of that
default bundle.

create(bundle) Creates an instance of this builder’s entity type, with values determined by prior calls to the entity. The
bundle parameter sets the bundle to use while creating this builder instance.

The no-argument create method

The no-argument create method uses a default bundle that all the builders share. This is adequate for most test
purposes. However, as all objects created this way share the same bundle, committing the bundle on just one of the
created objects commits all of the objects to the database. This also makes them available to the PolicyCenter
interface portion of a test. For example:
var address = new AddressBuilder()
 .withCity("Springfield")
 .asHomeAddress()
 .create()

 new PersonBuilder()
 .withFirstName("Sean")
 .withLastName("Daniels")
 .withPrimaryAddress(address)
 .create()

 address.Bundle.commit()

In this example, Address and Person share a bundle, so committing address.Bundle also stores Person in the
database. If you do not need a reference to the Person, then you do not need to store it in a variable.
GUnit resets the default bundle before every test class and method.

The create and commit method

The createAndCommit method is similar to the create method. However, after adding the entity to the default
bundle, this method commits that bundle to the database.

The create with bundle method

If you need to work with a specific bundle, use the create(bundle) method. Guidewire recommends that you use
this method inside of a transaction block. A transaction block provides the following:
• It creates the bundle at the same time as it creates the new builder.
• It automatically commits the bundle as it exits.

The following example illustrates the use of a data builder inside a transaction block.
uses gw.transaction.Transaction

 function myTest() {
 var person : Person

 Transaction.runWithNewBundle(\ bundle -> {
 person = new PersonBuilder()
 .withFirstName("John")
 .withLastName("Doe")
 .withPrimaryAddress(new AddressBuilder()
 .withCity("Springfield")
 .asHomeAddress())
 .create(bundle)

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating and extending test data builders 133

 })

 assertEquals("Doe", person.LastName)

}

Notice the following about this example:
• The example declares the person variable outside the transaction block, making it accessible elsewhere in the

method.
• The data builder uses an AddressBuilder object nested inside PersonBuilder to build the address.
• The Transaction.runWithNewBundle statement creates the bundle and automatically commits it after Gosu

Runtime executes the supplied code block.
In summary, the create(bundle) method does not create a bundle. Rather, it uses the bundle passed into it.
Guidewire recommends that you use this method inside a transaction block that both creates the bundle and commits
it automatically.
If you do not use this method inside a transaction block that automatically commits a bundle, then you must commit
the bundle yourself. To do so, add bundle.commit to your code.

Creating new builders
If you need additional builder functionality than that provided by the PolicyCenter base configuration builders, you
can do either of the following:
• Extend an existing builder class and add new builder methods to that class.
• Extend the base DataBuilder class and create a new builder class with its own set of builder methods.

You can also create a builder for a custom entity that you created by extending the DataBuilder class.

Extending an existing builder class
To extend an existing builder class, use the following syntax:
class MyExtendedBuilder extends SomeExistingBuilder {
 construct() {
 ...
 }
 ...
 function someNewFunction() : MyExtendedBuilder {
 ...
 return this
 }
 ...
}

The following MyPersonBuilder class extends the existing PersonBuilder class. The existing PersonBuilder
class contains methods to set a home phone number and mobile phone number. The new extended class contains a
method to set the person’s alternative phone number. As there is no static field for the properties on a type, you must
look up the property by name. Note that you must first define the new property in the data model.
uses gw.api.databuilder.PersonBuilder

class MyPersonBuilder extends PersonBuilder {

 construct() {
 super(true)
 }

function withAltPhone(testname : String) : MyPersonBuilder {
 set(Person#AltPhone, testname)
 return this
 }

 }

The PersonBuilder class has two constructors. This code sample uses the one that takes a Boolean that means
create this class withDefaultOfficialID.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

134 chapter 15: Creating and extending test data builders

Another more slightly complex example would be if you extended the Person object and added a new
PreferredName property. In this case, you might want to extend the PersonBuilder class also and add a
withPreferredName method to populate that field through a builder.

Extending the DataBuilder class
To extend the DatabBuilder class, use the following syntax:

class MyNewBuilder extends DataBuilder<BuilderEntity, BuilderType> {
 ...
}

The DataBuilder class takes the following parameters:

Parameter Description

BuilderEntity Type of entity created by the builder. The create method requires this parameter so that it can return a
strongly-typed value and, so that other builder methods can declare strongly-typed parameters.

BuilderType Type of the builder itself. The with methods require this on the DataBuilder class so that it can return a
strongly-typed builder value (to facilitate the chaining of with methods).

If you choose to extend the DataBuilder class (gw.api.databuilder.DataBuilder), place your newly created
builder class in the gw.api.databuilder package in the Studio Tests folder. Start any method that you define in
your new builder with one of the following recommended words:

Initial word Indicates

on A link to a parent. For example, PolicyPeriod is on an Account, so the method is onAccount(Account
account).

as A property that holds only a single state. For example, asSmallBusiness or asAgencyBill.

with The single element or property to be set. For example, the following sets a FirstName property:
 withFirstName("Joe")

Your configuration methods can set properties by calling DataBuilder.set and DataBuilder.addArrayElement.
You can provide property values as any of the following:
• Simple values.
• Beans to be used as subobjects.
• Other builders, which PolicyCenter uses to create subobjects if it calls your builder's create method.
• Instances of gw.api.databuilder.ValueGenerator. For example, an instance that generates a different value to

satisfy uniqueness constraints for each instance constructed.
DataBuilder.set and DataBuilder.addArrayElement optionally accept an integer order argument that
determines how PolicyCenter configures that property on the target object. (PolicyCenter processes properties in
ascending order.) If you do not provide an order for a property, Studio uses DataBuilder.DEFAULT_ORDER as the
order for that property. PolicyCenter processes properties with the same order value (for example, all those that do
not have an order) in the order in which they are set on the builder.
In most cases, Guidewire recommends that you omit the order value as you are implement builder configuration
methods. This enables callers of your builder to select the execution order through the order of the configuration
method calls.
Constructors for builders can call set, and similar methods to set up default values. These are useful to satisfy null
constraints so it is possible to commit built objects to the database. However, Guidewire generally recommends that
you limit the number of defaults. This is so that you have the maximum control over the target object.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating and extending test data builders 135

Other DataBuilder classes

The gw.api.databuilder package also includes gw.api.databuilder.ValueGenerator. You can use this class to
generate a different value for each instance constructed to satisfy uniqueness constraints. The databuilder package
includes ValueGenerator class variants for generating unique integers, strings, and typekeys.
• gw.api.databuilder.SequentialIntegerGenerator
• gw.api.databuilder.SequentialStringGenerator
• gw.api.databuilder.SequentialTypeKeyGenerator

Custom builder populators

Ideally, all building can be done through simple property setters, using the DataBuilder.set or
DataBuilder.addArrayElements methods. However, you may want to define more complex logic, if these
methods do not suffice. To achieve this, you can define a custom implementation of
gw.api.databuilder.populator.BeanPopulator and pass it to DataBuilder.addPopulator. Guidewire
provides an abstract implementation, AbstractBeanPopulator, to support short anonymous BeanPopulator
objects.
The following example uses an anonymous subclass of AbstractBeanPopulator to call the withCustomSetting
method. This code passes the group to the constructor, and the code inside of execute only accesses it through the
vals argument. This allows the super-class to handle packaging details.
public MyEntityBuilder withCustomSetting(group : Group) {

 addPopulator(new AbstractBeanPopulator<MyEntity>(group) {

 function execute(e : MyEntity, vals : Object[]) {
 e.customGroupSet(vals[0] as Group)
 }
 })
 return this
}

The AbstractBeanPopulator class automatically converts builders to beans. That is, if you pass a builder to the
constructor of AbstractBeanPopulator, it returns the bean that it builds in the execute method. The following
example illustrates this.
public MyEntityBuilder withCustomSetting(groupBuilder : DataBuilder<Group, ?>) : MyEntityBuilder {

 addPopulator(new AbstractBeanPopulator<MyEntity>(groupBuilder) {

 function execute(e : MyEntity, vals : Object[]) {
 e.customGroupSet(vals[0] as Group)
 }
 })
 return this
}

Create and test a builder for a custom entity

About this task

It is possible to create a builder for a custom entity. For example, suppose that you want each PolicyCenter user to
have an array of external credentials for automatic sign-on to linked external systems. To implement this
requirement, you can create an array of ExtCredential on User, with each ExtCredential having the following
parameters.

Parameter Type

ExtSystem Typekey

UserName String

Password String

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

136 chapter 15: Creating and extending test data builders

After creating your custom entity and its builder class, you need to test it. To accomplish this, you need to do the
following:

Task Affected files

1. Create a custom ExtCredential array entity and extend the User entity to include it. ExtCredential.eti
User.etx

2. Create an ExtCrendentialBuilder by extending the DataBuilder class and adding
withXXX methods to it.

ExtCredentialBuilder.gs

3. Create a test class to exercise and test your new builder. ExtCredentialBuilderTest.gs

To create a new array ExtCredential custom entity, do the following tasks, as shown in the procedure.
• Add the ExtSystem typelist by using the Typelist editor in Guidewire Studio.
• Define the ExtCredential array entity in the ExtCredential, by using the editor in Guidewire Studio.
• Modify the array entity definition to include a foreign key to User in ExtCredential.
• Add an array field to the User entity in User.etx.

Procedure

1. Add the ExtSystem typelist.
a. In Guidewire Studio, navigate to configuration→config→Extensions→Typelist.
b. Right-click Typelist, and then click New→Typelist.
c. In Name, type ExtSystem. Then, click OK.
d. Add a few external system typecodes.

Add SystemOne, SystemTwo, or similar items.
2. Create the ExtCredential entity type.

a. In Guidewire Studio, navigate to configuration→config→Extensions→Entity.
b. Right-click Entity, and then click New→Entity.
c. In Entity, type ExtCredential. Then, click OK.
d. Set the exportable attribute to true.
e. Set the platform attribute to true.
f. Add a typekey with the following attributes:

name
ExtSystem

typelist
ExtSystem

nullok
false

desc
Type of external system

g. Add a column with the following attributes:
name

UserName

type
shorttext

nullok
false

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating and extending test data builders 137

h. Add a column with the following attributes:
name

Password

type
shorttext

nullok
false

i. Add a foreignkey with the following attributes:
name

UserID

fkentity
User

nullok
false

desc
FK back to User

3. Modify the User entity.
a. In Guidewire Studio, in configuration→config→Extensions→Entity, double-click User.etx.
b. Add an array with the following attributes:

name
ExtCredentialRetirable

type
ExtCredential

desc
An array of ExtCredential objects

arrayfield
UserID

exportable
false

4. Create an ExtCredentialBuilder class that extends the base DataBuilder class. Place this class in its own
package under configuration and in the gsrc folder.
a. In Guidewire Studio, navigate to configuration→config→gsrc.
b. Right-click gsrc, and then click New→Package.
c. In Enter new package name, type a name for the new package. Then, click OK.

Type AllMyClasses.
d. Right-click AllMyClasses, and then click New→Gosu Class.
e. In Name, type ExtCredentialBuilder. Then, click OK.
f. In the editor, enter the following code:

package AllMyClasses

uses gw.api.databuilder.DataBuilder

class ExtCredentialBuilder extends DataBuilder<ExtCredential, ExtCredentialBuilder> {

 construct() {
 super(ExtCredential)
 }

 function withType (type: typekey.ExtSystem) : ExtCredentialBuilder {

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

138 chapter 15: Creating and extending test data builders

 set(ExtCredential.TypeInfo.getProperty("ExtSystem"), type)
 return this
 }

 function withUserName(somename : String) : ExtCredentialBuilder {
 set(ExtCredential.TypeInfo.getProperty("UserName"), somename)
 return this
 }

 function withPassword(password : String) : ExtCredentialBuilder {
 set(ExtCredential.TypeInfo.getProperty("Password"), password)
 return this
 }
}

Notice the following about this code sample.
• It includes a uses ... DataBuilder statement.
• It extends the Databuilder class, setting the BuilderType parameter to ExtCredential and the
BuilderEntity parameter to ExtCredentialBuilder.

• It uses a constructor for the super class—DataBuilder—that requires the entity type to create.
• It implements multiple withXXX methods that populate an ExtCredential array object with the passed

in values.
5. Create an ExtCredentialBuilderTest class that is a GUnit test that uses the ExtCredentialBuilder class

to create test data. Place this class in its own package in the Tests folder.

package MyTests

uses AllMyClasses.ExtCredentialBuilder
uses gw.transaction.Transaction

@gw.testharness.ServerTest
class ExtCredentialBuilderTest extends gw.testharness.TestBase {

 static var credential : ExtCredential
 construct() {
 }

 function beforeClass () {
 Transaction.runWithNewBundle(\ bundle -> {
 credential = new ExtCredentialBuilder()
 .withType("SystemOne")
 .withUserName("Peter Rabbit")
 .withPassword("carrots")
 .create(bundle)
 }
)
 }

 function testUsername() {
 assertEquals("User names do not match.", credential.UserName, "Peter Rabbit")
 }

 function testPassword() {
 assertEquals("Passwords do not match.", credential.Password, "carrots")
 }
}

Notice the following about this code sample:
• It includes the uses statements for both ExtCredentialBuilder and gw.transaction.Transaction.
• It creates a static credential variable. As the code declares this variable outside of a method—as a class

variable—it is available to all methods within the class. (GUnit maintains a single copy of this variable.) As
you run a test, GUnit creates a single instance of the test class that each test method uses. Therefore, to
preserve a variable value across multiple test methods, you must declare it as a static variable.

• It uses a beforeClass method to create the ExtCredential test data. This method calls
ExtCredentialBuilder as part of a transaction block, which creates and commits the bundle automatically.
GUnit calls the beforeClass method before it instantiates the test class for the first time. Thereafter, the test
class uses the test data created by the beforeClass method. It is important to understand that GUnit does
not drop the database between execution of each test method within a test class. However, if you run

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Creating and extending test data builders 139

multiple test classes together (for example, by running all the test classes in a package), GUnit resets the
database between execution of each test class.

• It defines several test methods, each of which starts with test, with each method including an assertXXX
method to test the data.

Result

If you run the ExtCredentialBuilderTest class as defined, the GUnit tester displays green icons, indicating that
the tests were successful.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

140 chapter 15: Creating and extending test data builders

chapter 16

Gosu PCF tests

This topic details information about PCF testing with Gosu. These can be used as part of GUnit tests or in
conjunction with Behavior Testing Framework.

Support methods for user interface tests
The framework provides methods to test a user interface defined by PCF (Page Configuration Format) files. The
methods are available in test classes that extend pcSmokeTestClassBase.

Note: The PolicyCenter use of the term smoke test is specific to this framework. A framework smoke
test verifies the user interface, such as the existence and operation of elements on a PCF page or a
smoke test verifies the general reliability of a build.

Method: dismissAndGetAlert

dismissAndGetAlert() : String

The dismissAndGetAlert method closes an alert dialog. The method returns the alert message.
class MyTestClass extends pcSmokeTestClassBase {

 function testMySampleTest() {
 ...
 // Click the Page.Screen.Edit button
 myScreenPage.MyScreen.MyEditButton.click()
 dismissAndGetAlert()
 ...
 }
}

Method: dismissAndGetConfirmation

dismissAndGetConfirmation() : String

The dismissAndGetConfirmation method closes a confirmation dialog. The method returns the confirmation
message.
class MyTestClass extends pcSmokeTestClassBase {

 function testMySampleTest() {
 ...
 // Click the Page.Screen.Close button. Not expecting a confirmation dialog.
 myScreenPage.MyScreen.MyCloseButton.click()
 if(isConfirmationShowing()) {
 PLAssertions.fail("Unable to close screen because:\n" + dismissAndGetConfirmation())

Gosu PCF tests 141

 }
 ...
 }
}

Method: getCurrentPage

getCurrentPage() : Object

The getCurrentPage method retrieves the Gosu object that represents the current PCF page.
For every PCF file, the framework provides a corresponding class that includes a strongly typed property for each of
the page's elements. Retrieving the page object of a PCF file enables test code to access the object's properties to
evaluate and modify the page's fields, buttons, and other items, including sub-objects, like detail views.
// Retrieve the page object for the current PCF page
var page = getCurrentPage()

// Retrieve the detail view sub-object on this page
var detailView = page.MyDetailScreen.MyDetailView

// The detail view has an input with an ID value of "Code." Set its value.
detailView.Code.Value = 'X'

// The page has an Update button. Click it.
page.Update.click()

// Verify the detail view's input value still contains the modified value.
if (detailView.Code.Value != 'X') {
 // ... Handle the issue
}

Method: getCurrentWorksheet

getCurrentWorksheet() : Object

The getCurrentWorksheet method retrieves the Gosu object that represents the current worksheet. If there is no
current worksheet, the method returns null.
A PCF worksheet is similar to a PCF page. The framework provides a corresponding class for each worksheet. The
class includes a strongly-typed property for each of the worksheet's elements. Retrieving the worksheet object
enables test code to access the object's properties to evaluate and modify the worksheet's fields.
// Click the page's Show button to show a worksheet.
page.Show.click()
assertThat(getCurrentWorksheet()).isNotNull()

// Retrieve the worksheet and verify its expected contents exist
var myWorksheet = getCurrentWorksheet() as pcftest.MyAwesomeWorksheet
assertThat(myWorksheet.itemsLV._Entries.Count).isEqualTo(10)
assertThat(myWorksheet.itemsLV._Entries[0].Name.Text).isEqualTo("Awesome")

// Click worksheet item's Delete button and verify the expected behavior
myWorksheet.itemsLV._Entries[0].Delete.click()
assertThat(getCurrentWorksheet().itemsLV._Entries.Count).isEqualTo(9)

Method: goToEntryPoint

goToEntryPoint(entryPoint : String) : Object
goToEntryPoint(entryPoint : String, parameters : Map<String, String>) : Object

The goToEntryPoint method transfers the user interface focus to a specified page. Multiple method signatures are
provided.
The entryPoint argument references the name of the page to transfer to. The parameters argument is a list of key-
value pairs that are passed as arguments to the loaded page.
The method returns the page object of the page transferred to.
class MyTestClass extends PCSmokeTestClassBase {
 // Any point in the application can be accessed from the tab bar

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

142 chapter 16: Gosu PCF tests

 var _tabBar : pcftest.TabBar as TabBar

 // ... Constructors and other overridden methods

 /**
 * Log in a user with the given name and password. Initialize the TabBar property.
 */
 function login(username : String, password : String) {
 var startPage = (this.goToEntryPoint("Login") as pcftest.Login).login(username, password)
 _tabBar = (startPage as pcftest.DesktopActivities)._parent.TabBar
 }
}

Method: isConfirmationShowing

isConfirmationShowing() : boolean

The isConfirmationShowing method determines whether a confirmation dialog is showing.
The method returns true if a confirmation dialog is showing. Otherwise, returns false.
For example code, see the dismissAndGetConfirmation method.

Method: refreshPage

refreshPage() : Object

The refreshPage method posts the current page to the server. The operation is equivalent to refreshing the browser
window.
The method returns the page object for the refreshed page.

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

Gosu PCF tests 143

Guidewire PolicyCenter 10.1.2 ISBTF and GUnit Testing Guide

144 chapter 16: Gosu PCF tests

	ISBTF and GUnit Testing Guide
	Contents
	Guidewire Documentation
	About PolicyCenter documentation
	Support

	Getting started
	Behavior Testing Framework overview
	Goals of Behavior Testing Framework
	Technologies used in Behavior Testing Framework

	Installing Behavior Testing Framework
	Install Behavior Testing Framework
	Verify the Behavior Testing Framework installation
	Resolving errors that occur during verification

	Behavior Testing Framework architecture
	Behavior Testing Framework layers
	The business layer
	The mapping layer
	The context implementation layer

	Writing scenarios
	Scenarios overview
	Scenario structure
	Scenario names
	Scenario steps overview
	Given, When, and Then steps
	Data tables

	Feature file overview
	Feature file structure
	Attributes available throughout a feature file

	Best practices for scenario design
	Conduct scenario grooming meetings
	Include both narrow and end-to-end tests

	Best practices for scenario language
	Evaluate the usability of the base configuration scenarios

	Working with feature files
	Feature file location
	Feature file names
	Create a feature file
	Adding scenarios to a feature file

	Running scenarios
	Overview of running scenarios
	Test servers
	Running feature files from Studio
	Run an individual scenario from Studio
	Run feature files from Studio

	Running groups of feature files
	Create a test suite class
	Example test suite
	Running a test suite from Studio
	Running a test suite from a command prompt

	Mapping steps to implementation code
	Creating step methods
	Glue code in Behavior Testing Framework
	Context Factory
	RemoteSmokeTestHelperModule
	Step methods

	Step method structure
	The scenario step connector
	The method declaration
	The method body

	Step classes
	Step class structure
	Best practices for creating step class files

	Extending context APIs
	Overview of LOB-agnostic context APIs
	LOB-agnostic context API resources
	Base configuration resources for LOB-agnostic business contexts
	Extending base configuration context APIs

	Extending a base configuration context API
	Extend a base configuration context API
	Step 1: Creating scenarios that have new steps
	Step 2: Creating the step method
	Step 3: Extending the context API interface
	Step 4: Extending the context API impl
	Step 5: Modifying ContextFactory
	Step 6: Modifying ContextFactoryImpl
	Step 7: Binding the extension interface to the impl
	Running the first test

	Summary of best practices

	Creating context APIs
	Overview of LOB-agnostic context APIs
	LOB-agnostic context API resources
	Base configuration resources for LOB-agnostic business contexts
	Creating new context APIs

	Creating a new context API
	Create a new context API
	Step 1: Creating scenarios that use new steps
	Step 2: Creating the step method
	Step 3: Creating the context API interface
	Step 4: Creating the context API impl
	Step 5: Modifying ContextFactory
	Step 6: Modifying ContextFactoryImpl
	Step 7: Binding the new interface to the impl
	Running the first test

	Summary of best practices

	The Line/Job Context API
	Overview of LOB-specific business contexts
	Structure of the Line/Job Context API
	The line of business dimension
	The job dimension
	The line/job impls
	The structure for submissions

	Resources associated with the Line/Job Context API
	Resources directly associated with the Line/Job Context API
	Resources indirectly associated with the Line/Job Context API

	Adding a new line of business

	Testing submissions on a new line of business
	Summary of the Line/Job Context API
	Adding a new line of business for submission testing
	Add a line of business for submission
	Step 1: Creating submission scenarios that use new steps
	Step 2: Modifying ProductCode
	Step 3: Modifying TagInfoProcessor
	Step 4: Creating new step methods
	Step 5: Creating an interface/impl pair for the new LOB
	Step 6: Creating a SubmissionContextImplBase for the new LOB
	Step 7: Creating the new line/job impl for quick quotes
	Step 8: Creating the new line/job impl for full quotes
	Step 9: Binding the new impls to the parent interface
	Running the first test

	Summary of best practices

	Writing implementation code
	Working with test data
	Test data overview
	General testing functionality
	Testing functionality specific to Behavior Testing Framework

	Data wrappers
	The datawrapper class
	Using data wrapper objects
	Data wrapper objects in the base configuration

	The DataSetup class
	Mapping impl code to modular steps
	The DataSetup hierarchy
	Enhancements to the platform builders

	Transformers

	Additional topics
	Behavior Testing Framework for ContactManager
	Installing Behavior Testing Framework for ContactManager
	Install Behavior Testing Framework for ContactManager
	Verify the Behavior Testing Framework for ContactManager installation
	Resolving errors that occur during verification

	Platform-level testing functionality
	GUnit Test Framework
	Creating a framework test
	Core functions of the test framework base classes
	Support functions for the test framework
	Creating a framework test suite
	Running a test suite at the command prompt

	Using test data builders
	Overview of test data builders
	Creating objects using test data builders
	Declaring the test object variable
	Setting object values
	Creating the object
	Creating multiple test objects from a template object
	Creating related objects

	Creating and extending test data builders
	Creating an entity builder
	Builder create methods

	Creating new builders
	Extending an existing builder class
	Extending the DataBuilder class
	Create and test a builder for a custom entity

	Gosu PCF tests
	Support methods for user interface tests

