
Guidewire PolicyCenter ™

REST API Framework

Release 10.1.2

© 2021 Guidewire Software, Inc.
For information about Guidewire trademarks, visit http://guidewire.com/legal-notices.
Guidewire Proprietary & Confidential — DO NOT DISTRIBUTE

Product Name: Guidewire PolicyCenter
Product Release: 10.1.2
Document Name: REST API Framework
Document Revision: 14-June-2021

http://guidewire.com/legal-notices

Contents

Guidewire Documentation .6
About PolicyCenter documentation .6
Support .8

1 Guidewire REST APIs . 9
REST API building blocks. .9
Working with REST files in Guidewire Studio .10

REST configuration files . 11
How to version configuration files . 11
Understanding REST configuration files that change .12
Making changes to REST APIs during a rolling upgrade .12

REST API requests .13
HTTP operations .13
HTTP status codes. .14

REST API responses. .14
Database transactions .14

Reserving a database connection .15
Localizing REST requests and responses .15
Setting REST-related configuration parameters .16

2 Accessing REST API information . 17
Working with the /apis endpoint .17
Working with the /swagger.json endpoint .18
Working with Swagger UI .18

Known Swagger Issue - null pointer exception .19
Access Swagger UI .19
Access information about an API endpoint .20

Exporting the API schema .20
Profiling REST APIs. .20
Logging REST APIs .21

3 Designing a REST API . 23
Working with JSON files. .23

Overview of the JSON schema format .24
Mapping PolicyCenter objects to JSON objects. .25
Working with JSON objects .26
JSON schema wrapper types. .27

Generate schema wrapper classes .27
Working with Swagger files .28

Overview of the Swagger schema format .29
Working with schema parameters .29

4 Implementing a REST API . 31
Handler class methods. .32
Handler method parameters .32
Working with GET and POST operations .34
Exception handling .36

Exception handling classes .37
Exception handling examples .38

Guidewire PolicyCenter 10.1.2 REST API Framework

3

Package gw.api.exceptions.rest .38

5 Publishing a REST API . 41
File published-apis.yaml .41

File published-apis.yaml document objects .42
Default API templates .43
Changes to file published-apis.yaml. .44

Forming the API URL. .44

6 Creating a simple Activities API. 45
Understanding the Activity API data model .45
Setting basic API functionality .47

Creating the Activity JSON schema .47
Creating the Activity API Swagger schema .50
Publishing the Activities API .51
Creating a basic handler class .52
Testing your work .53

Adding more API fuctionality .54
Getting activities .54
Getting activity detail. .55
Creating an activity .58
Updating an activity. .59
Setting user permissions .61

Setting user permissions for GET /activities. .62
Setting user permissions for POST /activities .63

Adding search and sort capabilities .63
Filtering activity details .65
Setting validation constraints .67

7 The IRestDispatchPlugin plugin . 69
Using the IRestDispatchPlugin plugin .70
Default implementation class DefaultRestDispatchPlugin .71

Processing REST requests .71
Logging request activity .74

The RequestContext object .75
Working with RequestContext objects .75

8 REST servlet processing flow . 79

9 Guidewire Swagger specification . 83
Swagger document objects .84

The Swagger root object. .84
The Swagger Contact object .88
The Swagger External Documentation object .88
The Swagger Header object .88
The Swagger Info object. .89
The Swagger Items object. .90
The Swagger License object .92
The Swagger Operation object .92
The Swagger Parameter object .94
The Swagger Path Item object. .98
The Swagger Response object .98
The Swagger Response Schema object .99
The Swagger Schema object . 100
The Swagger Schema Items object. 101
The Swagger Security Requirement object . 102

Guidewire PolicyCenter 10.1.2 REST API Framework

4

The Swagger Security Scheme object. 102
The Swagger Tag object . 103
The Swagger X-GW-CORS-policy object. 103
The Swagger X-GW-Serialization object . 105

Combining Swagger schema files . 106
Swagger file combination ordering . 107
Swagger file combination rules . 107
Validating Swagger schemas . 108
Global overrides . 109
Handler composition . 109

Guidewire PolicyCenter 10.1.2 REST API Framework

5

Guidewire Documentation

About PolicyCenter documentation
The following table lists the documents in PolicyCenter documentation:

Document Purpose

InsuranceSuite Guide If you are new to Guidewire InsuranceSuite applications, read the InsuranceSuite Guide for
information on the architecture of Guidewire InsuranceSuite and application integrations. The
intended readers are everyone who works with Guidewire applications.

Application Guide If you are new to PolicyCenter or want to understand a feature, read the Application Guide. This guide
describes features from a business perspective and provides links to other books as needed. The
intended readers are everyone who works with PolicyCenter.

Upgrade Guide Describes the overall upgrade process, and describes how to upgrade your configuration and
database. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations.

Configuration Upgrade Tools
Guide

Describes the tools and functionality provided by the Guidewire InsuranceSuite Configuration
Upgrade Tools. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations. Visit the Guidewire Community to
access the Configuration Upgrade Tools Guide, which is available for download, separately from the
main documentation set, with the Configuration Upgrade Tools.

Installation Guide Describes how to install PolicyCenter. The intended readers are everyone who installs the application
for development or for production.

System Administration Guide Describes how to manage a PolicyCenter system. The intended readers are system administrators
responsible for managing security, backups, logging, importing user data, or application monitoring.

Configuration Guide The primary reference for configuring initial implementation, data model extensions, and user
interface (PCF) files for PolicyCenter. The intended readers are all IT staff and configuration engineers.

PCF Format Reference Describes PolicyCenter PCF widgets and attributes. The intended readers are configuration engineers.
See the Configuration Guide

Data Dictionary Describes the PolicyCenter data model, including configuration extensions. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Security Dictionary Describes all security permissions, roles, and the relationships among them. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Globalization Guide Describes how to configure PolicyCenter for a global environment. Covers globalization topics such as
global regions, languages, date and number formats, names, currencies, addresses, and phone
numbers. The intended readers are configuration engineers who localize PolicyCenter.

Rules Guide Describes business rule methodology and the rule sets in Guidewire Studio for PolicyCenter. The
intended readers are business analysts who define business processes, as well as programmers who
write business rules in Gosu.

Guidewire Contact Management
Guide

Describes how to configure Guidewire InsuranceSuite applications to integrate with ContactManager
and how to manage client and vendor contacts in a single system of record. The intended readers are
PolicyCenter implementation engineers and ContactManager administrators.

Best Practices Guide A reference of recommended design patterns for data model extensions, user interface, business
rules, and Gosu programming. The intended readers are configuration engineers.

Integration Guide Describes the integration architecture, concepts, and procedures for integrating PolicyCenter with
external systems and extending application behavior with custom programming code. The intended

Guidewire PolicyCenter 10.1.2 REST API Framework

6

Document Purpose
readers are system architects and the integration programmers who write web services code or
plugin code in Gosu or Java.

REST API Client Guide Describes how to use the InsuranceSuite REST API Client to make outbound HTTP calls to internal or
third-party REST services.

Java API Reference Javadoc-style reference of PolicyCenter Java plugin interfaces, entity fields, and other utility classes.
The intended readers are system architects and integration programmers.

Gosu Reference Guide Describes the Gosu programming language. The intended readers are anyone who uses the Gosu
language, including for rules and PCF configuration.

Gosu API Reference Javadoc-style reference of PolicyCenter Gosu classes and properties. The reference can be generated
at any time to reflect the current PolicyCenter configuration. The intended readers are configuration
engineers, system architects, and integration programmers.

ISBTF and GUnit Testing Guide Describes the tools and functionality provided by InsuranceSuite for testing application behavior
during an initial implementation or an upgrade. The guide covers functionality related to Behavior
Testing Framework, GUnit, and Gosu functionality designed specifically for application testing. There
are two sets of intended readers: business analysts who will assist in writing tests that describe the
desired application behavior; and technical developers who will write implementation code that
executes the tests.

Glossary Defines industry terminology and technical terms in Guidewire documentation. The intended readers
are everyone who works with Guidewire applications.

Advanced Product Designer
Guide

Advanced Product Designer is a tool that helps you, a business user, design, simulate, and deploy an
insurance product. The intended readers are business analysts who understand insurance products,
business systems analysts who liaise between business analysts and IT, project managers, and IT who
provides technical expertise in areas such as programming, testing, and databases.

Product Model Guide Describes the PolicyCenter product model. The intended readers are business analysts and
implementation engineers who use PolicyCenter or Product Designer. To customize the product
model, see the Product Designer Guide.

Product Designer Guide Describes how to use Product Designer to configure lines of business. The intended readers are
business analysts and implementation engineers who customize the product model and design new
lines of business.

REST API Framework Describes the Guidewire InsuranceSuite framework that provides the means to define, implement,
and publish REST API contracts. It also describes how the Guidewire REST framework interacts with
JSON and Swagger objects. The intended readers are system architects and integration programmers
who write web services code or plugin code in Gosu or Java.

Conventions in this document
Text style Meaning Examples

italic Indicates a term that is being defined,
added emphasis, and book titles. In
monospace text, italics indicate a variable to
be replaced.

A destination sends messages to an external system.
Navigate to the PolicyCenter installation directory by running the
following command:

cd installDir

bold Highlights important sections of code in
examples.

for (i=0, i<someArray.length(), i++) {
 newArray[i] = someArray[i].getName()
}

narrow bold The name of a user interface element, such
as a button name, a menu item name, or a
tab name.

Click Submit.

Guidewire PolicyCenter 10.1.2 REST API Framework

7

Text style Meaning Examples

monospace Code examples, computer output, class and
method names, URLs, parameter names,
string literals, and other objects that might
appear in programming code.

The getName method of the IDoStuff API returns the name of the
object.

monospace italic Variable placeholder text within code
examples, command examples, file paths,
and URLs.

Run the startServer server_name command.
Navigate to http://server_name/index.html.

Support
For assistance, visit the Guidewire Community.
Guidewire customers

https://community.guidewire.com

Guidewire partners
https://partner.guidewire.com

Guidewire PolicyCenter 10.1.2 REST API Framework

8

https://community.guidewire.com
https://partner.guidewire.com

chapter 1

Guidewire REST APIs

Guidewire released the basic Guidewire REST API framework in InsuranceSuite 10.0.0. The Guidewire REST API
framework, in combination with Guidewire Integration Views, provides the InsuranceSuite platform with support for
the following:
• Swagger and OpenAPI 2.0 API schemas
• JSON data schema payloads
• Mappings from the InsuranceSuite data model schema to JSON

Working with custom REST APIs

If you intend a large scale implementation of REST APIs (or conversion of existing APIs to RESTful APIs),
Guidewire recommends that you contact your account representative for more information. For more immediate
REST API needs, Guidewire provides this document as a guide towards a self-managed implementation of APIs
using the InsuranceSuite 10.0 REST API framework.

REST API building blocks
The Guidewire REST API framework uses the following types of files to define the API contract:
• Swagger 2.0 schema files to define the structure of a given API
• JSON schema files to define the schema for API inputs and outputs

Together, the defined Swagger and JSON schema file determine the following parts of the REST API.
API resources

Swagger files define the set of endpoint resources exposed by the API. Each resource is called a "path" or "path
item" in Swagger, and can have variables interposed for things such as resource IDs. For example, the following
string can define a resource for the addresses associated with a specific user:

/users/{contactId}/addresses

In this example, /users and /addresses are Swagger path items.
HTTP verbs

Swagger files define the set of HTTP verbs it is possible to use to operate on a particular resource. Swagger calls
these verbs the API "operations." For example:

• A GET operation on /users/{userId}/addresses returns the addresses for the specified user.
• A POST operation on /users/{userId}/addresses adds a new address to the specified user.
• A PATCH operation on /users/{userId}/addresses/{addressId} updates existing information on the

specified user/address.
Guidewire REST APIs 9

• A DELETE operation on /users/{userId}/addresses/{addressId} deletes the specified user/address.
Payload schema

JSON files define the schema for the payload (the body of the request) that the API passes during request, if any.
In the previous example, a POST operation to resource /users/{userId}/addresses can specify a JSON schema
definition that defines the format for the body of the POST request.

Response schema
JSON files define the schema for the response returned by an operation, if any, as well as any possible HTTP
codes that the operation returns. For example, a GET request to resource /users/{userId}/addresses can
specify a JSON schema for the list of addresses and that the default success code is 200.

Path and custom headers
Swagger files define the set of path parameters and custom headers that are applicable to each operation. In the
previous example, {userId} and {addressId} are path parameters. At runtime, the REST API framework
matches the request URL against the defined path and extracts out those path parameters for use by the
application code.

Validation and serialization/deserialization
Swagger files define the validation and serialization/deserialization process for API parameters, and API inputs
and outputs. For example, it is possible to declare a parameter as required, or with a specified minimum and
maximum value, or as an integer rather than a string. The REST API framework can then use that information to
automatically validate the inputs and return an appropriate HTTP response if the input is invalid, and can
deserialize the data into appropriate POJOs for use by the application code

Each operation defined within the Swagger schema binds to a specific handler class and method. The REST API
framework then uses that class method to process the request whenever a request is made against the appropriate
URL and HTTP method.

Working with REST files in Guidewire Studio
Only place REST configuration files in the following locations in Guidewire Studio:

configuration→config→Integration→...

configuration→gsrc→namespace→...

These Studio folders contain the following types of files:

Studio location File types

config→Integration Swagger and JSON schema files, mapping files, and similar items.

gsrc→namespace→... Gosu classes that perform the actual API work, API handler classes, for example. Place your files in their
own namespace so as to keep these files separate from Guidewire files.

Use a unique name space

Guidewire recommends that you place any REST-related files that you create in their own name space. Using your
company name in the file path segregates and isolates any files that you add to the PolicyCenter installation.
Thus, for files that you add, the apis directory structure underneath the Studio Integrations node looks similar to the
following:
/apis
 /mycompany

Place the Gosu resources or authorization files that you create in a subdirectory underneath gsrc that uses your
company name in the file path, for example:

configuration→gsrc→mycompany→...

Guidewire PolicyCenter 10.1.2 REST API Framework

10 chapter 1: Guidewire REST APIs

REST configuration files
Place the YAML Swagger and JSON configuration files that you create in subdirectories of the Integration directory
in the Guidewire Studio Project window:

configuration→config→Integration→...

The Integration folder contains the following directory structure.
/apis

The Integration→apis folder contains the following types of files.

File type Description

name-version.swagger.yaml Describes the Swagger schema to use with the REST API, including:
• The endpoints the REST API supports
• The methods each path supports
• The schema responses to expect

published-apis.yaml Controls which Swagger schemas the REST servlet exposes. Every API that file published-
apis.yaml lists is addressable through the REST servlet.

/filters

The Integration→filters folder contains the following types of files.

File type Description

name-version.gql Provides GraphQL-style filters; the filter serves as a white list of properties to include with object
fields to actually materialize and serialize.

/mappings

The Integration→mappings folder contains the following types of files.

File type Description

name-version.mapping.json Describe how to transform PolicyCenter data into a JSON object that conforms to a specific
JSON schema document.

/schemas

The Integration→schemas folder contains the following file types.

File type Description

name-version.schema.json Describes the structure of a JSON object with which an API client interacts.

schema_reserved_words.txt Defines a set of reserved words that are impermissible to use as JSON schema property
names.

How to version configuration files
The Swagger (*.yaml) and JSON (*.json) schema files that define a REST API exist in the following Guidewire
Studio folders:

Integration→apis for Swagger schema files
Integration→mappings for JSON mapping files
Integration→schemas for JSON schema files

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire REST APIs 11

Every YAML and JSON file name consists of two parts, each part separated by a '-' character:
• Actual file name
• Version number

Use the following syntax in naming YAML (Swagger) and JSON files:
name-version.swagger.yaml

name-version.schema.json

The use of version numbers provides for the following capabilities:
• It provides for a common namespace for a set of configuration files.
• It provides for the ability to create different functionality or behavior for different versions of the API.
• It provides for the ability to publish different versions of an API in different environments.

Guidewire recommends that you use this same file naming scheme for any Gosu handler class and resource files that
you create as well.

Fully qualified file names

The file name and the subfolder path all become part of the fully qualified name of the file. The folder path to the
actual file becomes part of the fully qualified file name similar to a package name in Java, for example:

gw.system.server.profiler.base-1.0.swagger.yaml

Understanding REST configuration files that change
If the application server is operating in development mode, the REST API framework monitors the file system for
changes to configuration files. The REST framework checks every API request to determine if the request requires a
reload of the REST servlet configuration. If the framework detects a configuration change, the framework reloads all
of the following items:
• Swagger schemas
• JSON schemas
• Integration mappings
• GraphQL filters
• File published-apis.yaml

The framework also reloads these configuration files after any refresh of the Gosu type system, which a hot swap of
Gosu classes generally triggers. By combining dynamic reload of schema files with using the DCEVM to hot swap
classes, it is possible to do much of your API development without having to restart the application server. As the
REST framework instantiates the API handler classes on every API request as well, the only states that persist across
API requests are the static variables that you define in the handler classes.

Notes

1. The file system watcher looks only for changes to files in directories that are present at server start up. The
watcher does not watch for changes to files in directories added to the file system after the server starts.

2. The file system watcher groups together the file changes that it finds once every five seconds. Thus, it is
possible for the watcher to not be aware of a recent change to a configuration file. If you change a schema file
and the next API request does not seem to reflect the change, retry the request in a few seconds.

Making changes to REST APIs during a rolling upgrade
Guidewire supports rolling (configuration) upgrades in a production system.

Gosu classes

It is generally safe to add new Gosu classes to Guidewire PolicyCenter during a rolling upgrade. Therefore, it is
generally safe to add new Gosu handler classes, and other REST Gosu configuration classes, during a rolling
upgrade.

Guidewire PolicyCenter 10.1.2 REST API Framework

12 chapter 1: Guidewire REST APIs

Swagger and JSON configuration files

It is safe to add, delete, or update the following file types in the Studio Integration folder during a rolling
(configuration) upgrade.
/apis

• *.swagger.yaml

• versions.json

• published-apis.yaml

/filters
• *.gql

/mappings
• *.mapping.json

/schemas
• *.schema.json

• codegen-schema.txt

• versions.json

Published APIs

It is safe to make the following changes to file published-apis.yaml during a rolling upgrade:
• Add or remove API entries from the file.
• Change the value of a property on a published API entry in the file.

REST API requests
REST (REpresentatonal State Transfer) is the idea of using HTTP protocol to view and manipulate resources. The
REST API receives HTTP requests from clients and then queries the database for what it needs. After the REST API
receives back what it needs from the database, the API sends back a JSON response to the requesting client.
The REST framework uses 'Unique Resource Locators' (URLs) to reference exposed entities. It also uses HTTP
response codes to provide information on the state of the interaction.

HTTP operations
The Guidewire REST framework provides the following set of allowable HTTP operations on PolicyCenter
resource, which are:

GET Retrieves information about a resource

PATCH Updates or modifies information about a resource

POST Creates a resource

PUT Updates or fully replaces a resource

DELETE Deletes a resource

In addition to the listed standard HTTP operations, the HTTP protocol defines the following operations as well.

Method Description

OPTIONS Retrieves information about a given URL. The REST framework automatically provides a default implementation of
the OPTIONS method that it does not authenticate. The default method returns a 200 status code and a single Allow
header that contains the list of HTTP methods defined for the specified path. For example, if you define GET and

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire REST APIs 13

Method Description
PATCH for a given path, making an OPTIONS request to that path returns an Allow header value of "GET, HEAD, PATCH,
OPTIONS".

HEAD Returns the headers that would come back from a standard GET HTTP request. The REST API framework
automatically implements the HEAD method for any path that defines a GET operation. The REST framework
authenticates the HEAD method only if it authenticates the associated GET method as well. The default
implementation of this method by the framework simply calls the GET HTTP method and then returns the response
with an empty response body.

HTTP status codes
The REST request and response cycle generates HTTP status codes. The status codes generally fall into the
following categories.

Status code Category Meaning

1xx Information Communicates transfer protocol-level information

2xx Success Indicates that the server accepted the client request successfully

3xx Redirection Indicates that the client must take some additional action in order to complete its request

4xx Client error Indicates that an error condition occurred on the client side of the HTTP request and response

5xx Server error Indicates that an error condition occurred on the server side of the HTTP request and response

The Guidewire REST API framework returns a standard set of HTTP codes for successful operations.

Operation Response

GET, PATCH 200

POST 201

DELETE 204

REST API responses
One of the final steps in handling a REST request is the serialization of the HTTP response. During this step, it is
necessary to serialize both the response body and the response headers:
• The REST API framework writes the response body to the output stream of the HttpServletResponse servlet

container.
• The REST API framework turns the response headers into String objects that the servlet container is responsible

for writing to the response.
The REST API Framework supports the serialization of a number of different Java object types that the API handler
method can return directly, using one of the following ways:
• Set the object as the value of the body of the Response object.
• Add the object as the value of a header on the Response object.

Database transactions
It is possible for a REST API caller to supply a unique transaction ID while making a request. This ID ultimately
maps to an insert operation into the TransactionID table in the database. If this transaction ID does not already
exist, the REST request completes successfully. However, if a transaction with that ID already exists in the
TransactionID table, the database commit for the API fails.

Guidewire PolicyCenter 10.1.2 REST API Framework

14 chapter 1: Guidewire REST APIs

You can use this functionality to avoid making duplicates requests, in cases in which the request actually issues a
database commit. This functionality works globally for any API handler that commits a bundle to the database.

Transaction ID usage

To use this functionality, the caller needs to specify the transaction ID in the GW-DBTransaction-ID custom header.
The value of the header can be any alphanumeric string generated by the client, up to 128 characters. The header
must be a globally unique request ID.

Transaction ID limitations

The transaction ID functionality has the following limitations:
• It only works with APIs whose handlers actually commit to the database.
• It only works if the API commits to the database a single time only (except for certain very rare exceptions)
• It only works if the database commit is one of the following:

◦ The database commit is the only interesting side effect of the API call.
◦ The database commit happens before any other side effect happens (such as notifications to external systems).

• It does not work for duplicate requests. Duplicate requests do not return identical responses back to the client.
Instead, PolicyCenter marks the request as failed. The client code needs to decide how (or even if) to handle that
situation

Reserving a database connection
To reserve a database connection for the duration of the request handling by the REST framework, set the following
Swagger operation to true:

x-gw-reserve-db-connection

Localizing REST requests and responses
There are four possible ways in which you can localize a REST request. In order of preference, they are:
• Set values for custom headers GW-Language and GW-Locale
• Use the locale preference set on browser set by user
• Set a value for header Accept-Languague
• Use the browser default language and locale

Guidewire recommends that you use custom headers GW-Language and GW-Locale to localize a REST request if you
also need to localize the request response. This is most likely the case if there is a REST request directly from a
browser or otherwise on behalf of an actual person.
Be aware that:
• The authenticated user in PolicyCenter can be a generic integration user that does not have a meaningful

language or locale preference.
• Often, it is not possible for a user to change the Accept-Language header value if the REST request originates

from a browser.

Rules for locale processing

PolicyCenter uses the following rules in determining and processing the locale on a REST request.
Rule #1 - If set, GW-Language and GW-Locale determine the language and locale for processing the request
from that point on

The GW-Language and GW-Locale headers need to map to a virtual language and locale code. This means that if
the header language or locale code is more specific than a language or locale configured on the server, the server
falls back to the more generic option. For example, if you specify en_GB, which does not exist on the server, then
REST processing on the server uses en instead.

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire REST APIs 15

If your header specification does not match any virtual language or locale, REST processing uses the default
server language or locale instead. If this does happen, PolicyCenter does not report that the header language or
locale did not match a configured server language or locale.

Rule #2 - If present, header Accept-Language sets the language for processing the request prior to
authenticating the user

REST processing only uses the value of Accept-Language to set the language prior to authenticating the user. It
sets the language only for the request, not the locale. The Accept-Language header functions in a similar fashion
to the GW-Language header in that it can be a virtual language as well.

Rule #3 - If GW-Language and GW-Locale are not set, use the authenticated user's preferences for language
and locale

The authenticated user's preferences override the Accept-Language header, but not the GW-Language or GW-
Locale headers. If there is no authenticated user, or the authenticated user has no configured language
preference, REST processing uses the Accept-Language header to set the language for remainder of REST
processing.

Setting REST-related configuration parameters
Guidewire provides a number of REST- and JSON-related configuration parameters in the basic REST API
framework. You find these configuration parameters in file config.xml. These parameters have the following
meanings.

Parameter Default Description

OverrideJSONMappingWarnings default Determines how the REST framework handles JSON mapping warnings.

OverrideJSONSchemaWarnings default Determines how the REST framework handles JSON schema warnings.

OverrideRESTSchemaWarnings default Determines how the REST API framework handles Swagger schema warnings:

PreloadRestServletConfig false Determines whether the REST API framework preloads the REST servlet
configuration during servlet initialization.

See also

• See the PolicyCenter Configuration Guide for more information on these configuration parameters.

Guidewire PolicyCenter 10.1.2 REST API Framework

16 chapter 1: Guidewire REST APIs

chapter 2

Accessing REST API information

Guidewire designs its REST APIs to be self-documenting at runtime. To further this end, Guidewire provides the
following useful tools:
• Embedded Swagger UI tool that provides information on each published REST API and its supported HTTP

operations
• Default API endpoint /apis that provides the list of available REST APIs

Additional Guidewire tools

In addition to the already listed tools for gathering information about the REST APIs, Guidewire also provides the
following tools that provide further API documentation and testing:

Tool More information

A gwb build tool for externalizing API schemas “Exporting the API schema” on page 20

A Guidewire Profiler for REST APIs “Profiling REST APIs” on page 20

Third-party tools

Guidewire recommends that you use a third-party tool such as Postman to view and test the REST APIs that you
create. You can download Postman from the following web site:

https://www.getpostman.com/

Working with the /apis endpoint
In the base configuration, Guidewire provides a special Swagger schema that the REST framework uses to
document the set of APIs published on that server. By default, the REST API schema is available as a GET operation
to the /apis endpoint. For example, if running the application server locally, the URL to access the API schema is
the following:

localhost:8180/pc/rest/apis
The /apis endpoint is itself a standard Swagger API. Accessing the /apis endpoint provides a full list of the
available REST APIs along with additional useful information.

The /apis schema definition

Guidewire defines the /apis endpoint in schema file api_list_-1.0.json located in the Project window in
Guidewire Studio in the following location:

Accessing REST API information 17

https://www.getpostman.com/

Integration→schemas→gw→pl→framework
In the base configuration, Guidewire lists the api_list-1.0 schema in file published-apis.yaml, which makes
the schema file accessible by default.
In file published-apis.yaml, you can do the following:
• Make the /apis endpoint inaccessible by removing the endpoint from the file.
• Publish the /apis endpoint to certain environments only by setting environment variables for the endpoint

Working with the /swagger.json endpoint
Each individual API can also serve up its own documentation using the /swagger.json API that the REST
framework adds automatically to the API. A GET request to /apiBasePath/swagger.json returns the externalized,
canonical Swagger JSON for that API, suitable for use with standard tools that understand Swagger 2.0 schemas.
For example, to access the Swagger schema for the list of published APIs, use the following URL:

http://localhost:8180/pc/rest/apis/swagger.json

Accessing this URL returns an HTML-formatted version of the Swagger schema for that API endpoint.

Automatic generation of /swagger.json

The Guidewire REST framework uses the API template mechanism to add the /swagger.json path to the REST
APIs. In the base configuration, file published-apis.yaml defines the default template for the REST APIs:

gw.pl.framework.dev_template-1.0.swagger.yaml

File gw.pl.framework.dev_template-1.0 includes Swagger schema
gw.pl.framework.api_docs-1.0.swagger.yaml, which automatically adds the following REST endpoint:

GET /swagger.json

It is possible to remove the /swagger.json endpoint from the list of published APIs by using a different default
template.

Working with Swagger UI
In the base configuration, each InsuranceSuite application contains a static distribution of the Swagger UI tool. You
can use this tool to browse API documentation live from the same server that is publishing the APIs. The Swagger
UI tool is available from the following location:

servletBasePath/resources/swagger-ui/

On the local server, the location Swagger UI becomes the following URL:
http://localhost:8180/pc/resources/swagger-ui

In this URL, the servletBasePath variable becomes:
localhost:8180/pc/

Swagger UI performance

Swagger UI can be quite slow. As a consequence, Guidewire does not recommend that you use Swagger UI to test
large APIs. For the most part, use Swagger UI to view schema information about an API only. Guidewire
recommends that you use a third-party tool such as Postman to design, develop, and test REST APIs instead.

The Swagger UI screen

The Swagger UI screen contains the following elements.
The Explore entry field

At the top of the Swagger UI entry screen is a box in which you can enter the URL of a specific REST API.
Clicking the Explore button returns the list of endpoints and HTTP operations for the that specific API. To
determine the API URL, review the list of published APIs generated by the /apis endpoint.

Guidewire PolicyCenter 10.1.2 REST API Framework

18 chapter 2: Accessing REST API information

The base URL link
Directly underneath the API name (in large font), the screen defines the base path for this particular API, as well
as a clickable link to the Swagger schema for the API. You can also see the same information in a more human-
readable form lower down on the Swagger UI screen.

The Authorize dialog
If authentication is set up correctly, Swagger UI displays an Authorize button near the top of the screen in which
you can enter your user credentials. This enables the Swagger UI to authorize your API requests. If basic
authentication is not set up, you can still browse the documentation using Swagger UI. However, you cannot try
live requests, as Swagger UI cannot authenticate those requests correctly.

HTTP operations
The lower portion of the Swagger UI screen contains a list of the valid HTTP operations for the listed API,
organized by API endpoint. Clicking one of the API operation buttons expands a pane that provides further
information about this particular operation, including the following:

• A description of the operation
• Any parameters that the operation uses
• Information about the operation parameters such as a description, whether it is required, and the parameter

type
• Response code associated with the request

You can also try out the action of a particular API operation by clicking Try it out. If you need to enter specific
data for a parameter, use the fields that open to do so.

More information

For information on Swagger UI, refer to the following web site:
https://swagger.io/tools/swagger-ui/

Known Swagger Issue - null pointer exception
Null pointer exception in development environments

Issue
Under specific circumstances, attempting to perform an action in Swagger UI that requires PolicyCenter
authentication can cause a null pointer exception. This happens if you use the same browser to log into both the
PolicyCenter application and the Swagger UI.
In this case, the browser shares the session between the two applications. As a consequence, the PolicyCenter log in
does not run through the REST code that is necessary for a REST API to log into the application.
Work-around
Do one of the following:
• Log out of Guidewire PolicyCenter.
• Use a different browser type for PolicyCenter than the one you are using for Swagger UI.
• Use a different tool such as Postman instead of Swagger UI.

Access Swagger UI
Before you begin

You must have a running application server before you can access Swagger UI.

Procedure

1. In Guidewire Studio, or from a command prompt, start the PolicyCenter application server.

Guidewire PolicyCenter 10.1.2 REST API Framework

Accessing REST API information 19

https://swagger.io/tools/swagger-ui/

2. After the application server starts, open a browser window and enter a URL using the following syntax:
server:port/xx/rest/apis

In the URL, replace server, port, and xx (two-letter application context) with actual values, for example:
localhost:8180/pc/rest/apis

Swagger UI opens and you can view information on the REST APIs.

Access information about an API endpoint
The Swagger UI provides self-documenting information about each published REST API.

Procedure

1. Ensure that the PolicyCenter application server is running.
2. Navigate to some variation of the following URL, using the correct host:port as necessary:

http://localhost:8180/pc/resources/swagger-ui/

3. Click GET / Returns a list of available APIs.
4. In the pane that opens, click Try it out, then click Execute.
5. The GET operation returns a list of published APIs in the Response body area.
6. Copy the docs URL for the API of interest to the clipboard.
7. Paste the URL string into the box at the top of the Swagger UI screen and click Explore.

The Swagger UI updates to contain information about that specific API.

Exporting the API schema
Guidewire provides the following gwb build tool to externalize and generate the Swagger schemas:

gwb genExternalSchemas

This command writes the REST API externalized JSON schema files to the following location in the Studio Project
window:

configuration→build→external-schemas
After running this command, you see the schema file (swagger.json) and its associated XSD file (schema.xsd), for
example:
• gw.pl.framework.api.docs-1.0.swagger.json

• gw.pl.framework.api.docs-1.0.swagger.xsd

Profiling REST APIs
Guidewire integrates the REST API framework with Guidewire Profiler, available for all InsuranceSuite
applications. You must enable REST profiling for each specific endpoint that you want to profile. After you enable
the profiler for a given endpoint, all requests to that endpoint generate profiler records that you can view in
Guidewire Profiler. In many cases, Guidewire Profiler can be helpful in investigating the specific details of a given
API for which you want more data.
To start REST profiling for a specific endpoint:
1. In PolicyCenter Server Tools, navigate to the following location:

Guidewire Profiler→Configuration
2. Click Enable Profiling for Rest Operations.

To view information on a profiled REST operation:
1. In PolicyCenter Server Tools, navigate to the following location:

Guidewire Profiler→Profiler Analysis→Rest Operation

Guidewire PolicyCenter 10.1.2 REST API Framework

20 chapter 2: Accessing REST API information

2. Select the server for which you want to view data.

See also

• For more information on Guidewire Profiler, see the PolicyCenter System Administration Guide.

Logging REST APIs
Guidewire provides the means to use intentional logging with REST APIs in the default implementation class for the
optional IRestDispatchPlugin plugin. This plugin is suitable for very high-level profiling of REST APIs, as it
captures information about the API, path template, and elapsed time for each request. The log messages that the
plugin generates are often useful for obtaining an aggregate view of what requests the REST framework receives
and how long these requests are taking to complete.

REST endpoints and intentional logging

Guidewire provides several endoints that you can use with intentional logging.
Setting ILConfig options

REST endpoint /intentionallogging/config supports the following request types:
• GET

• PUT

API PUT requests accept JSON payloads that have the following form.
"ILConfig": {
 "type": "object",
 "properties": {
 "enabled": {
 "type": "boolean"
 }
 },
 "required": [
 "enabled"
]
}

Setting ILElementConfig options
REST endpoint /intentionallogging/elements supports the following request types:

• GET

• PATCH

API PATCH requests accept JSON payloads that have the following form.
"ILElementConfigs": {
 "type": "object",
 "properties": {
 "elementConfigurations": {
 "type": "array", "items": { "$ref": "#/definitions/ILElementConfig" }
 }
 },
 "required": [
 "elementConfigurations"
]
},
"ILElementConfig": {
 "type": "object",
 "properties": {
 "elementType": {
 "type": "string",
 "x-gw-type": "typekey.ILElementType",
 "x-gw-export-enumeration": true
 },
 "identifier": { "type": "string" },
 "enabled": { "type": "boolean" }
 },

Guidewire PolicyCenter 10.1.2 REST API Framework

Accessing REST API information 21

 "required": ["elementType", "identifier", "enabled"]
}

Guidewire PolicyCenter 10.1.2 REST API Framework

22 chapter 2: Accessing REST API information

chapter 3

Designing a REST API

In designing a REST API, your first task is to determine the following:
• The structure of the API resources
• The HTTP verbs to make available
• The structure of the API inputs and outputs

API definition tasks

The actual definition of the API consists of the following two tasks:
1. Create a schema.json file to define the structure of any JSON inputs and outputs.
2. Create a swagger.yaml file that defines the API paths (endpoints) and operations.

Guidewire recommendations

In general, Guidewire recommends that you use the following conventions in designing a REST API:
1. Try to structure actions as operations on resources rather than as RPC calls. This means that instead of calling

an addContact method, you perform a POST operation to a /contacts resource. However, not all API actions
fit nicely within the standard HTTP verbs.

2. Do not try to mutate (change) a resource using a GET operation.
3. Use the following HTTP verbs to perform actions on a resource:

• GET to retrieve an existing resource or resources
• PATCH to partially update a resource, updating specific fields, for example
• DELETE to remove objects
• POST to create new resources under an existing container

4. Use plurals for resource paths in which there are multiple sub-resources. For example, if there are multiple
contacts, use /contacts/{contactId} rather than /contact/{contactId}.

Working with JSON files
Use a JSON schema to define your REST API inputs and outputs. A JSON schema consists of a set of definitions,
with each definition corresponding to a logical type, which maps to a possible JSON object. These definitions
themselves have properties, which define the set of properties allowed on that object. Properties can be either simple
scalar values, references to other definitions, or arrays of scalars or objects.
In practice, Guidewire supports a subset of the JSON schema, draft 4 specification. The subset of the JSON schema
that Guidewire defines is almost identical to the subset of the JSON schema that one can use in Swagger

Designing a REST API 23

declarations. However, there are a few items that the Swagger specification defines that Guidewire does not support.
In InsuranceSuite, the REST API framework and the Integration Views framework share the JSON schema files.
Both of these frameworks makes use of the same files, with the same rules, and both frameworks support the same
subset of the JSON schema.

Naming JSON schema files

As with Swagger schemas, each JSON schema file defines its own namespace and version. JSON schema files have
the following characteristics:
• Contain JSON code
• Have an ending suffix of .schema.json

Guidewire stores JSON schemas in the following location in Guidewire Studio:
configuration→config→integration→schemas

Guidewire recommends that you create a sub-folder under the schemas folder using your company name to store
your JSON files. For example, suppose that you create a JSON schema file named contact-1.0.schema.json. You
then store this file in the following location in Studio:

configuration→config→integration→schemas→mycompany
The fully qualified name of the JSON schema file becomes mycompany.contact-1.0.

Guidewire JSON specification

See the PolicyCenter Integration Guide for details of the Guidewire JSON specification.

JSON scheme documentation

Refer to the following web site to view the full JSON schema documentation:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00

Overview of the JSON schema format
The following code defines a basic JSON file.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "definitions": {
 "Contact" : {
 "type" : "object",
 "properties" : {
 "FirstName":
 "type": "string"
 },
 "Addresses" : {
 "type" : "array",
 "items" : {
 "type" : "object",
 "$ref" : "#/definitions/Address"
 }
 }
 }
 },
 "Address" : {
 "type" : "object",
 "properties" : {
 "AddressLine1" : {
 "type" : "string"
 },
 "State" : {
 "type" : "string",
 "x-gw-type" : "typekey.State"
 }
 }
 }
 }
}

Guidewire PolicyCenter 10.1.2 REST API Framework

24 chapter 3: Designing a REST API

https://tools.ietf.org/html/draft-fge-json-schema-validation-00

In this example, the various JSON property have the following meanings.
definitions

The definitions section is itself an object that contains keys for each type that it defines. Each definition has a
properties property that contains keys for each allowed property.

properties
Each property defines its own type. The type must be one of the following:

• array

• boolean

• integer

• number

• object

• string

If the type is array, there must be an items property that defines the types of items. Items can be any of the
above types except for array, as Guidewire does not permit schemas with nested arrays.
If the type is object (for both properties or items), the $ref property defines the schema of the referenced object.
A reference to a definition within the same file starts with #/definitions/.
If the type is a scalar type, it is possible to define an additional format and x-gw-type property.

Using the example JSON schema, a Contact definition looks similar to the following JSON code.
{
 "FirstName" : "Homer",
 "Addresses" : [
 {
 "AddressLine1" : "100 Evergreen Terrace",
 "State" : "MI"
 }
]
}

Mapping PolicyCenter objects to JSON objects
In defining your REST API, you need to develop a JSON schema that describes how to convert a given
PolicyCenter entity object into a JSON object that a REST response returns. The PolicyCenter object can be nearly
any data model entity. In creating your JSON mapping file, use the extension mapping.json and prepend the
appropriate namespace for your REST configuration files to the file name.
Place any JSON mapping files that you create in the following location in Guidewire Studio:

configuration→config→Integration→mappings
Guidewire recommends that you create a sub-folder under the Integration→mappings folder using your company
name to store your JSON files. For example, suppose that you create a JSON mapping file named
contact-1.0.mapping.json. You then store this file in the following location in Studio:

configuration→config→Integration→mappings→mycompany

Important

The JSON mapping schema must directly reflect the JSON API schema. This means that for every property you
define on a JSON object in a *.schema.json file, there must an equivalent property for the same JSON object in the
associated *.mapping.json file.

The mapping schema

The mapping schema file looks similar to the following JSON definition.
{
 "schemaName": "...",

 "mappers": {

Guidewire PolicyCenter 10.1.2 REST API Framework

Designing a REST API 25

 "Object": {
 "schemaDefinition": "..."

 "root": "..."

 "properties": {
 "propertyOne": {
 "path": "..."
 },
 "propertyTwo": "..." {
 "path": "..."
 }
 }

 }

 }

}

The example code inserts spaces for readability. The schema requires the use of the 'schemaName' and 'mappers'
element. The use of the 'combine' element is optional. You must supply real values for variables in italic font.

Working with JSON objects
The runtime JSON API that you use to consume or produce JSON data is based on a PolicyCenter JsonObject
object. The JsonObject object is basically a Map<String, Object>, the values for which can be one of the
following:
• Scalar POJO objects
• Other JsonObject objects
• Lists of scalars or JsonObject objects

These scalar values are the actual deserializer value, meaning BigDecimal objects or TypeKey objects, rather than
just JavaScript primitive types. Thus, after the REST framework receives a request, the framework deserialization
and validation of input happens in a single step. If the input does not validate against the schema or it is impossible
to deserialize the input, the framework returns a 400 "bad input" error and does not invoke the API handler class.
It is possible to manipulate JSON input by doing the following:
• Use standard map operations such as get, put, and containsKey
• Use a generated schema wrapper class

The following code examples illustrate these concepts.

Example JSON manipulation with JsonObject

The following example code illustrates how to create a Gosu function to manipulate a JSON object.

// Function with body of type JsonObject
function startBatchProcess(body: JsonObject): Long {
 var processId: ProcessID
 var processName = body.get("processType") as String
 var args = body.get("args") as List<String>
 ...
}

// Function returns a JsonObject
function getWorkQueue(processType: String): JsonObject {
 try {
 var wQueueStatus = getDelegate().getWQueueStatus(processType)
 var jsonObject = new JsonObject()
 if (wQueueStatus != null) {
 jsonObject.put("processType", wQueueStatus.getQueueName())
 jsonObject.put("numActiveExecutors", wQueueStatus.getNumActiveExecutors())
 jsonObject.put("numOfActiveWorkItems", wQueueStatus.getNumActiveWorkItems())
 }
 return jsonObject
 } catch (illegalArgumentException: IllegalArgumentException) {
 throw new NotFoundException("Invalid process type " + processType)
 }

Guidewire PolicyCenter 10.1.2 REST API Framework

26 chapter 3: Designing a REST API

Notice the following:
• The startBatchProcess method takes a single JsonObject object as input.
• The startBatchProcess method performs standard map get operations on the passed-in JSON object.
• The getWorkQueue method returns a JsonObject object.
• The getWorkQueue method performs standard map put operations to create the JSON object returned by the

method.

Example JSON manipulation with JSONWrapper class

The following example code illustrates a Gosu function that takes a generated JSonWrapper class as a parameter.
uses jsonschema.gw.pl.system.maintenance_tools.v10_0.Workqueue

...
//Function with body of type ProcessStartParams class, which is one of the generated JsonWrapper classes
function startBatchProcess(body: ProcessStartParams): Long {
 var processId: ProcessID
 var processName = body.getprocessType()
 var args = body.getargs()
 ...
}

//Function returning JsonWrapper object
function getWorkQueue(processType: String): Workqueue {
 try {
 var wQueueStatus = getDelegate().getWQueueStatus(processType)
 var workqueue = new Workqueue ()
 if (wQueueStatus != null) {
 workqueue.setprocessType(wQueueStatus.getQueueName())
 workqueue.setnumActiveExecutors(wQueueStatus.getNumActiveExecutors())
 workqueue.setnumOfActiveWorkItems(wQueueStatus.getNumActiveWorkItems())
 }
 return workqueue
 } catch (illegalArgumentException: IllegalArgumentException) {
 throw new NotFoundException("Invalid process type " + processType)
 }
}

Notice the following:
• The startBatchProcess method takes a single JsonWrapper object as input.
• The startBatchProcess method uses standard methods on ProcessStartParams to perform business logic.

JSON schema wrapper types
It is possible to generate schema wrapper types based on the JSON schema definitions. As you need to generate the
wrapper classes explicitly (and not at build time like other code generators), you need to check the generated classes
into source control. The generated classes do not represent DTO objects (Data Transfer Objects), but instead
represent wrappers around a JsonObject object.
To make use of the generated wrapper classes, you can do one of the following:
• Create a new wrapper instance that contains a new, empty JsonObject object
• Wrap an existing JsonObject instance

For more information on the JSON schema wrapper classes, see the Guidewire JSON specification in the
PolicyCenter Integration Guide.

Generate schema wrapper classes
JSON schema wrapper classes contain statically typed getter and setter methods on the specified object.

Procedure

1. In Guidewire studio, create a codegen-schemas.txt file in the following directory, if one does not already
exist:

Guidewire PolicyCenter 10.1.2 REST API Framework

Designing a REST API 27

configuration→config→integration→schemas

2. In codegen-schemas.txt, list the fully qualified names of the schemas for which you want to generate
wrapper classes, each schema on its own separate line.
For example, enter the fully qualified name of a schema in the following form:

gw.pl.system.cluster_tools-1.0

Use a dot separator (.), not a slash (/) and leave off the .schema.json file ending.
3. On the Studio toolbar, select Run→Edit Configurations.

This action opens a Run/Debug Configurations dialog.
4. In the dialog toolbar, click +, then select Application from the drop-down.

This action adds a new unnamed, node under Application.
5. Enter the following data in the dialog fields:

Name codgen

Main class com.guidewire.tools.json.JsonSchemaWrapperCodegenTool

Working directory Enter the root directory of your PolicyCenter installation, for example:
C:/PolicyCenter/10.1.2/

Use classpath of module configuration

Before launch: Make (including OSGI
Bundles), Activate tool window

Select Make (Including OSGI Bundles) .

You can accept the defaults for the remainder of the dialog fields, or, change the fields to meet your specific
needs.

6. On the Studio toolbar, select Run→codegen.
Studio opens a pane at the bottom of the Studio screen that logs the activity of the code generation operation.
After the code generation operation completes, Studio places the generated wrapper classes in the following
directory in Studio:

configuration→src→jsonschema

7. If you are using source control for the PolicyCenter application files managed by Studio, you need to check
the newly generated class files into source control as well.

Working with Swagger files
You define the Swagger schemas in yaml files. All Swagger schema files, including any that you create, must exist
in the following location in Guidewire Studio:

configuration→config→integration→apis

You can define Swagger schema files in their own namespace within the apis folder. You can also nest the Swagger
schema files in arbitrary folders. Swagger schemas must always have a version attached to the file name, separated
by a '-' (hyphen) character. Do not use the hyphen character in any other place in a Swagger file name except the
place listed. Use the following syntax in naming Swagger files:

name-version.swagger.yaml

As a best practice, Guidewire recommends that you place the Swagger schemas that you create in their own
namespace. For example, if you create a Swagger schema file named contact-1.0.swagger.yaml, place the file in
the following location in Studio:

configuration→config→integration→apis→mycompany

The following string is the fully qualified path to the Swagger schema file:
mycompany.contact-1.0

Guidewire PolicyCenter 10.1.2 REST API Framework

28 chapter 3: Designing a REST API

Guidewire Swagger specification

For details of the Guidewire Swagger specification, see “Guidewire Swagger specification” on page 83.

Overview of the Swagger schema format
The following code sample is a Swagger schema template that you use in creating the Swagger schema for a REST
API.
swagger: '2.0'
info:
 description: "Description of API"
 version: '1.0'
 title: "Name of API"
basePath: <base_path> # Base path prepended to every path in this API
 # Generally takes the form /grouping/version, such as /policies/v1
x-gw-schema-import:
 <alias>: <JSON_schema_name> # Can include any number of imports, but this API requires just one
produces: # Used as the default for operations that do not explicitly declare it
- application/json
consumes: # Used as the default for operations that do not explicitly declare it
- application/json
paths:
 /<path>:
 <HTTP_operation>: # Operations are in lower-case: get, post, patch, delete
 summary: <summary> # Any text you like
 description: <description> # Any text
 operationId: <operationId> # Becomes the handler method name, must be unique within this schema
 parameters: # Possible to omit if the method has no parameters.
 # Parameters is a list, so prefix each element with '-' (dash) to indicate that it is a list item
 - name: <foo>
 in: <query|path|body|header> # Must be either query, path, body, or header
 required: <true|false> # Defaults to false, must be set to true for path parameters
 type: <string|integer|number|boolean> # Use only with query, path, or header parameters
 schema: # Only include if using a parameter of type body
 $ref: <alias>#/definitions/<name>
 responses:
 '<code>': # Value must be enclosed in either single or double quotes.
 # Use 200 is generic success status, 201 for "created", 204 for responses without a body
 description: <description>
 schema: # Only include for a 201 or 204
 $ref: <alias>#/definitions/<name>

In creating your file, replace all terms in brackets (<...>) with actual values. Also note that the # sign in the last line
of the example does not indicate a comment (as the other hash marks do). Instead, it is part of the required text.

Working with schema parameters
It is possible for a resource to define, and use, any of the following parameter types:
• path

• query

• header

• body

In Swagger files, the 'in' field on the parameters element defines the parameter type, 'in: path', or, 'in:
query', for example.
Depending on the type of parameter, it is possible to specify a constraint that ensures the request conforms to
expected schema definition.

Guidewire PolicyCenter 10.1.2 REST API Framework

Designing a REST API 29

The Guidewire x-gw-type property

In addition to the standard parameter options specified in the Swagger schema 2.0, Guidewire supports a custom x-
gw-type property for the following parameter types:
• path

• query

• header
The value of a x-gw-type property must be a typecode from a valid PolicyCenter typekey. The following Swagger
code snippet illustrates this concept.
/destinations/{destinationId}/retry:
 post:
 summary: "Retry messages for a destination that had errors"
 description: ''
 operationId: retryMessages
 parameters:
 - $ref: "#/parameters/destinationId"
 - name: retryLimit
 in: query
 required: false
 type: integer
 format: int32
 - name: category
 in: query
 required: false
 type: string
 x-gw-type: typekey.ErrorCategory
 ...

Guidewire PolicyCenter 10.1.2 REST API Framework

30 chapter 3: Designing a REST API

chapter 4

Implementing a REST API

After you design your REST API (and create the necessary Swagger and JSON files), you then need to implement
the handler classes and methods that perform the actual work of the API. Implement any API handler classes that
you create in Gosu, as method binding relies on the actual names of the method parameters, which Java compilation
does not preserve. However, your Gosu class can subsequently delegate to a Java helper, if desired.
Every REST operation ultimately binds to a particular method on a particular class. You bind a class to an operation
by naming the necessary class or classes in an x-gw-apihandlers property on the operation, path, or root document.
Guidewire recommends that you first attempt to bind the class to the operation, then to the path, and finally to the
root document. This means that the REST API framework uses the property definition on the root object only if the
operation, then the path, do not specify the property explicitly.

Invocation of the handler class method

The REST framework invokes the method associated with the operation only after it performs the following tasks:
• Authenticates the API request
• Validates the request
• Deserializes the data inputs

If the input is bad at any step along this process, the REST framework does not invoke the handler method.

Constraints on handler classes

There are few constraints for designing an API handler class, except the following:
• Each custom handler class must have a no argument constructor as the REST framework instantiates the handler

class on every request.
• Each method name must match the operationId value of the operation that called the method.
• Each method parameter must be of type RequestContext, or, must be based on a parameter defined for the

method as configured in the Swagger schema.
Other than these constraints, you can structure a handler class however you like. Guidewire intentionally designs the
REST framework to have minimal binding between the handler class and the REST framework.

Implementing a REST API 31

Handler class methods
In order for the REST API framework to invoke a particular class method in a customer handler class, the method
must conform to a specific structure:
• The method must be public.
• The method must be non-static.
• The method name must match the value of the operationId property for the Swagger operation.
• The method parameters must be of type RequestContext, or, must have a name and type that matches a

parameter declared on the operation configuration.
• The method return type must be either void, gw.api.rest.Response, or some type that the framework can

serialize out.
• The class containing the method must contain a no-argument constructor

If the operationId is not a valid identifier for purposes of determining the expected method name, the REST
framework does the following:
• It prepends a leading '_' character to the method name if the first character is not a valid identifier start.
• It replaces all other illegal characters with '_'.

Specifying handler classes

You specify the set of possible handler class for an API by either of the following ways:
• Specify the set of handler classes directly on the operation using the x-gw-apihandler property.
• Specify the list of handler classes on the x-gw-apihandler property of the root object and not at the operation

level. The operation then uses the set of handler classes inherited from the root object if you do not specify the
handler classes at the operation level.

However, the REST framework does not propagate the x-gw-apihandler value on the root object across files
during file combination. The defaults on the root object apply only to operations defined in the original file. Any
value set for the x-gw-apihandler property at the operation level overrides the value of this property set on the root
object.

Handler method parameters
Each parameter to the API handler method must be one of the following:
• A RequestContext object
• A parameter declared on the Swagger schema for the associated operation

Guidewire does not require that a handler method have a method parameter for every possible operation parameter.
The REST framework can retrieve operation parameter values at runtime by name from the runtime
RequestContext object if there are no explicit arguments to the handler method.

Parameters of type RequestContext

If the method parameter is of type RequestContext (regardless of the parameter name), the framework passes in the
runtime RequestContext object. The runtime RequestContext object gives the handler method access to
information about the runtime context of the request such as the following:
• The raw HttpServletRequest servlet container object, which can provide raw request information that is not

accessible in other ways.
• Headers and path parameters by name, in either deserialized form (if explicitly listed in the schema) or raw form.

This is often helpful if writing common infrastructure shared across multiple API endpoints.
• The metadata about the request being served such as the SwaggerOperation object, path template, or the fully-

qualified name of the request API.
• The negotiated content type and other context information.

Guidewire PolicyCenter 10.1.2 REST API Framework

32 chapter 4: Implementing a REST API

See “The RequestContext object” on page 75 for more information.

Other parameter types

All method parameters that are not of type RequestContext must have the following characteristics:
• The parameter name must match the name of a Swagger operation parameter.
• The parameter type must match to something the REST framework can deserialize.

For parameters other than the body parameter, the type of the method parameter must match the runtime type of the
operation parameter as specified by the following properties:
• type

• format

• x-gw-type

If the parameter defines a set of items, the runtime type becomes a list of such objects (List[objects]).

Parameters of type body

The REST framework treats the body parameter as a special case, as it is possible to deserialize the request body
data to many different runtime types. If the operation consumes the application/json media type, and no other
types, then the body parameter can be any of the following types:
• byte[]

• String

• JsonObject

• Any subtype of JsonWrapper (which are generated schema wrapper types)
If the operation consumes multiple media types, or does not consume application/json, then the body parameter
can be only of type byte[] or String.

Method return types

A handler method can return any of the following types.
void

If an operation returns a 204 response code, the method handler can have no return value. This indicates that the
method has no response payload. In this case, the handler method can have a void return type, If the return type
is void, the Swagger operation must not declare any produces type.

String or byte[]
For a return type other than JSON, the handler method can return a String or byte[] array. The REST
framework then writes out as the raw string or bytes as the response.

JsonObject or JsonWrapper subtype
An operation that produces JSON-formatted data can return a JsonObject or any generated schema wrapper
type. The method serializes the JsonObject object according to the schema (if any) associated with the
operation's 2xx response code. For wrapper subtypes, the framework unwraps the wrapper and then serializes the
object as JSON.

TransformResult

An operation that produces JSON-formatted date and that uses an Integration Mapping to produce that data can
return a TransformResult directly.

Response

If the method handler needs more explicit control over the response's status code, or adds custom headers to the
response, the method handler can return a Response object that combines the desired status code, response body,
and headers.

Any other scalar type
The method invokes the toString method on the object.

Guidewire PolicyCenter 10.1.2 REST API Framework

Implementing a REST API 33

Working with GET and POST operations
The following examples illustrate how to work with Swagger GET and POST operations. The examples also show
how to bind the Swagger operation to methods on the associated handler class.

Working with GET operations

A GET operation does not have a request body. The following Swagger fragment defines a typical GET operation on
an example /contacts API endpoint.
/contacts/{contactId}/addresses:
 get:
 summary: "Returns the list of addresses for a given contact"
 description: "Returns the list of addresses for a given contact"
 operationId: getContactAddresses
 produces:
 - application/json
 parameters:
 - name: contactId
 in: path
 required: true
 type: string
 - name: limit
 in: query
 type: integer
 minimum: 1
 maximum: 100
 - name: offset
 in: query
 type: integer
 miniumum: 0
 responses:
 '200':
 description: "Successful creation"
 schema:
 $ref: "contact#/definitions/AddressList"

In the code snippet, notice the following:
• The defined operation is a GET operation.
• The value of operationId is getContactAddresses.
• The operation produces JSON objects.
• The operation defines three parameters, contactId, limit, offset. The three defined parameters become

arguments to method getContactAddresses on API handler class.
The following Gosu fragments illustrates the necessary functions on the handler class for the defined GET operation.
public function getContactAddresses(contactId : String, limit : Integer, offset : Integer) :
gw.pc.contact.v1_0.AddressList {

 var addresses = queryAddresses(contactId, limit, offset)
 var addressListJson = new gw.pc.contact.v1_0.AddressList()

 for (address : addresses) {
 addressListJson.addToAddresses(addressToJson(address))
 }
 return addressListJson
}

private function queryAddresses(contactId : String, limit : Integer, offset : Integer) : IQueryBeanResult<Address> {
 // Business logic
}

private function addressToJson(address : Address) : gw.pc.contact.v1_0.Address {
 var addressJson = new gw.pc.contact.v1_0.Address()
 addressJson.AddressLine1 = address.AddressLine1
 // More business logic
 return addressJson
}

Guidewire PolicyCenter 10.1.2 REST API Framework

34 chapter 4: Implementing a REST API

In the code snippet, notice the following:
• The getContactAddresses method name matches the POST operationId value.
• The method arguments are parameters on the GET operation: contactId, limit, and offset.
• The method returns an address list as a JSON object.

Working with POST operations

The following Swagger fragment defines a typical POST operation on an example /contacts API endpoint.
/contacts:
 post:
 summary: "Create a contact"
 description: "Creates a new Contact entity and optionally sends it out to AddressBook"
 operationId: createContact
 consumes:
 - application/json
 produces:
 - application/json
 parameters:
 - name: body
 in: body
 required: true
 schema:
 $ref: "contact#/definitions/Contact"
 - name: updateAB
 in: query
 required: false
 type: boolean
 responses:
 '200':
 description: "Successful creation"
 schema:
 $ref: "contact#/definitions/Contact"

In the code snippet, notice the following:
• The defined operation is a POST operation.
• The value of operationId is createContact.
• The operation both produces and consumes JSON objects.
• The operation defines two parameters, body and updateAB, both of which become inputs to the handler class.

The following Gosu fragment illustrates the necessary functions on the handler class for the POST operation.
public function createContact(body : gw.pc.contact.v1_0.Contact, updateAB : Boolean) :
 gw.pc.contact.v1_0.Contact {
 var contactEntity = createContact(body, updateAB != null && updateAB)
 return contactToJson(contactEntity)
}

private function createContact(contactJson : gw.pc.contact.v1_0.Contact, updateAB : Boolean) : Contact {
 // Actual business logic to construct and commit the entity
 var contactEntity : Contact
 Transaction.runWithNewBundle(bundle -> {
 contactEntity = new Contact(bundle)
 contactEntity.FirstName = contactJson.FirstName
 // More business logic
 })
 return contactEntity
}

private function contactToJson(contact : Contact) : gw.pc.contact.v1_0.Contact {
 // Mapping logic to turn the contact entity back into json
 var contactJson = new gw.pc.contact.v1_0.Contact()
 contactJson.FirstName = contact.FirstName
 contactJson.PublicId = contact.PublicId
 // More business logic
 return contactJson
}

Guidewire PolicyCenter 10.1.2 REST API Framework

Implementing a REST API 35

In the code snippet, notice the following:
• The createContact method name matches the POST operationId value.
• The method arguments are parameters on the POST operation, body and updateAB.
• The method returns the new contact as a JSON object.

Exception handling
There are multiple reasons that exceptions occur in REST API operations. For example, the exception can be one of
the following:
• Exception due to problems with the input sent by the client.
• Exception due to implementation bugs.
• Exception due to other runtime failures specific to the server environment. For example, the API could not access

the database, or, another user changed the data concurrently with the API request.

Status codes

PolicyCenter exception handling classes return standard HTTP status codes:
• The REST API framework roughly maps successful operations to the 2xx class of HTTP response codes.
• The REST API framework roughly translates client input errors to the 4xx class of HTTP response codes.
• The REST API framework roughly maps implementation bugs or other runtime problems to the 5xx class of

HTTP response codes.
The REST API framework manages many of the types of potential errors automatically. For example, if the request
does not validate against the declared parameters or the JSON schema for the request body, the framework returns a
400 response with the details of the issue. The framework does the same with authentication or authorization issues,
bad content types, and other similar types of issues.

Standard error format

The standard format for error messages contains the following JSON elements.

Element Description

status HTTP status code on the response, included on the payload. For errors, the HTTP status code indicates
the broad category of failure

errorCode Specific code for the error, to provide more information than that provided by the status code.
Typically, the error class sets this value to the name of the exception class, unless a custom exception
subclass sets it explicitly to some other value.

userMessage,
developerMessage

Error messages that describe the problem or issue in more detail. If the error message specifies both a
userMessage and a developerMessage, Guidewire recommends the following:

• Phrase userMessage in such a way as to make it possible to surface the error message directly to
the PolicyCenter user.

• Phrase developerMessage so as to be useful to the developer creating the client that calls the REST
API.

details Error message can also contain an array of additional details that describe the problem. The exact
properties on the details object can vary depending on the exception type

The following example illustrates an error message for a request that failed. In this case, the request payload was
missing the 'subject' property on the root JSON object, which the JSON specification specifically requires.
{
 "status": 400,
 "errorCode": "gw.api.rest.exceptions.BadInputException",
 "userMessage": "The request parameters or body had issues",
 "developerMessage": "The request parameters or body had issues. See the details elements for exact details of the
problems.",

Guidewire PolicyCenter 10.1.2 REST API Framework

36 chapter 4: Implementing a REST API

 "details": [
 {
 "message": "The 'subject' property is required",
 "properties": {
 "parameterName": "body",
 "parameterLocation": "body",
 "lineNumber": 1
 }
 }
]
}

Exception handling classes
Whether any exception thrown from within the handler method itself translate to HTTP response codes depends on
whether the exception class implements the HasErrorInfo interface:
• If a thrown exception implements the HasErrorInfo interface, the framework constructs the response based on

the status code and error details on the exception.
• If a thrown exception does not implement the HasErrorInfo interface, the framework translate the exception

into a generic 500 "internal server error" HTTP response.
A handler method can use any exception that implements the gw.api.exception.HasErrorInfo interface,
including custom exception subtypes. However, in general, the exception classes defined in the
gw.api.rest.exceptions package are suitable for mapping to common error cases. For example:

NotFoundException A method can throw a NotFoundException exception if the REST framework cannot find an entity ID
referenced from a path parameter in the database.

BadInputException A method can throw a BadInputException exception if the input fails some additional validation
performed by the method handler. In this way, it is possible to add additional validations in the method
that you cannot declare in the schema. For example, you can throw a BadInputException exception
that translates to a 400 error.

Exception handler classes

Any exception class that you create must do one of the following:
• Extend the RestExceptionWithErrorInfo class
• Implement the HasErrorInfo interface

Any API handler class that you create must check for error cases that the REST framework does not handle
automatically. The handler class must specifically throw the appropriate exceptions in cases in which the error is
caused by the input on the client side.

Stack traces

The API client response returns a stack trace for internal server errors, if the server is not in production mode.
Custom exception classes can trigger the inclusion of stack traces by extending the RestExceptionWithErrorInfo
class and calling the parent (super) constructor with the Boolean includeCause argument set to true:

super(statusCode, userMessage, developerMessage, details, includeCause)

For example:
super(500, userMessage, developerMessage, details, true)

In the base configuration, only the InternalServerErrorException class passes true for this argument.

Rewriting error messages

It is possible to rewrite error information using the rewriteErrorInfo method on the IRestDispatchPlugin
implementation class.

Guidewire PolicyCenter 10.1.2 REST API Framework

Implementing a REST API 37

Handler classes that return a Response object

It is possible for an API handler class to return a Response object that explicitly sets the status code to a 4xx or 5xx
status code. While this is legal to do, using a Response object to set the error code also makes it harder to ensure
that the error format is consistent across different classes of errors.
In such cases, the framework considers the request to be successful as no exceptions were thrown and the handler
class completed successful. This causes the handler class to invoke the rewriteResponse method on the
IRestDispatchPlugin class instead of the rewriteErrorInfo method. In general, Guidewire recommends that you
use a custom exception class that implements the HasErrorInfo interface and then throw an exception, rather than
returning an explicit Response object with a 4xx or 5xx status code.

Exception handling examples
BadInputException exception example

The following sample code illustrates a class method that throws a bad input exception.

function startBatchProcess(body: JsonObject): Long {
 var processType = body.get("processType") as String
 var batchProcessNames = getDelegate().getValidBatchProcessTypes()
 if (processType == null || !batchProcessNames.contains(processType)) {
 throw new BadInputException("Bad process type " + processType)
 }

}

ConflictingResourceException exception example

The following sample code illustrates a class method that handles a conflicting resource exception.

function createContact(body : gw.pc.contact.v1_0.Contact, updateAB : Boolean) : gw.pc.contact.v1_0.Contact {
 if(contactAlreadyExists(body)){
 throw new ConflictingResourceException("Contact already exists", null, null)
 }
 ...
}

private function contactAlreadyExists(contactJson : gw.pc.contact.v1_0.Contact) : Boolean {
 // Business logic to look up contact
 ...
}

private class ConflictingResourceException extends RestExceptionWithErrorInfo {
 protected construct(userMessage: String, developerMessage: String, details: List<RequestErrorDetails>) {
 super(409, userMessage, developerMessage, details)
 }
}

Notice the following:
• Method createContact throws a ConflictingResourceException exception if the contact to add already

exists.
• Private class ConflictingResourceException defines the message processing logic.

Package gw.api.exceptions.rest
Guidewire provides a number of exception classes in the gw.api.exceptions.rest package. This package contains
the following super class that many of the other classes in the packaged extend:
• RestExceptionWithErrorInfo

The following classes in gw.api.exceptions.rest package provide numeric return values.

Class Return value Meaning

BadInputException 400 Bad Request

Guidewire PolicyCenter 10.1.2 REST API Framework

38 chapter 4: Implementing a REST API

Class Return value Meaning

CorsException 403 Forbidden

InternalServerErrorException 500 Internal Server Error

NotAcceptableException 406 Not Acceptable

NotAuthorizedException 403 Forbidden

OperationNotSupportedException 405 Method Not Allowed

RestAuthenticationException 401 Unauthorized

ServiceUnavailableException - Service Unavailable

UnsupportedContentTypeException 415 Unsupported Media Type

Note: A 403 error means that the user is not authorized for the requested resource. If you do not want
the user to even be aware of the resource, use NotFoundException (404) instead.

The gw.api.exceptions.rest package also contains the following utility classes, called by
RestExceptionWithErrorInfo:
• RequestErrorDetails

• RequestErrorInfo

Guidewire PolicyCenter 10.1.2 REST API Framework

Implementing a REST API 39

Guidewire PolicyCenter 10.1.2 REST API Framework

40 chapter 4: Implementing a REST API

chapter 5

Publishing a REST API

Merely creating a swagger.yaml file does not, by itself, create a network endpoint. To create an API endpoint, you
must explicitly publish any APIs that you create by listing each API in file published-apis.yaml, located in Studio
in the following directory:

configuration→config→Integration→apis

Guidewire requires that you publish REST APIs explicitly in file published-apis.yaml for the following reasons:
1. It gives you total control over the network exposure of Guidewire PolicyCenter. The REST API framework

does not publish an API merely because the API is part of the base PolicyCenter application.
2. It ensures that if you extend the Guidewire base API Swagger files, you can publish the resulting APIs using

your own namespace and versioning schema.
3. It ensure that you do not accidentally publish an API. Thus, it ensures that test, or development, APIs do not

accidentally leak into the network.

File published-apis.yaml
Merely creating the API schema files does not, by itself, create a network endpoint. To create an API endpoint, you
must explicitly publish any APIs that you create by listing each API in file published-apis.yaml, located in Studio
in the following directory:

configuration→config→Integration→apis→...

Guidewire requires that you publish REST APIs explicitly in file published-apis.yaml for the following reasons:
1. It gives you total control over the network exposure of Guidewire PolicyCenter. The REST API framework

does not publish an API merely because the API is part of the base PolicyCenter application.
2. It ensures that if you extend the Guidewire base API Swagger files, you can publish the resulting APIs using

your own namespace and versioning schema.
3. It ensure that you do not accidentally publish an API. Thus, it ensures that test, or development, APIs do not

accidentally leak into a production network.
File published-apis.yaml has the following form.
apis:
 - name: gw.pl.framework.api_list-1.0
 - name: fully.qualified.path.to.apifile

defaultTemplate:
 - name: gw.core.pc.framework.v1.dev_template-1.0
 - name: fully.qualified.path.to.templatefile

Publishing a REST API 41

API templates

It is possible for the server environment to affect some aspects of how the REST framework exposes an API to the
network. A primary use case is the security section of the Swagger documents. If a server allows for HTTP Basic
Authentication, it is useful to include the appropriate declarations in the swagger.yaml file so that client tools such
as Swagger UI or Postman can automatically interpret that information and give the user the option to specify
authentication headers. However, whether the server supports Basic Authentication can depend upon whether the
server is a development or production server. It is also possible that you want to expose the /swagger.json
endpoint that self-documents the REST APIs, but, only for development or test or sandbox systems and not in
production environment.
To meet these needs, you can specify an API template that the REST framework includes with the API at runtime.
You can specify that an API template affects only a single API, or, you can specify a template as the global default.
Both of the API declarations and default template are sensitive to the server and env properties in a similar manner
to other configuration files. Thus, you can specify that the REST framework publish an API to a specific server only,
or, only if the server is operating in a specific server mode.

Publishing to different environments

The following example illustrates how to publish an API to a specific environment.
apis:
- name: gw.pc.systemtools.system_tools-10.0
 env: dev
- name: gw.pl.framework.api_list-1.0
defaultTemplate:
- name: gw.pl.framework.dev_template-1.0
- name: customer.framework.prod_template-1.0
 env : dev

In this example, notice the following:
• The apis element lists multiple API names. The first API on the list is active in a dev environment only. The last

API (gw.pl.framework.api_list-1.0) is active in all environments.
• The default template is gw.pl.framework.dev_template-1.0. It is active in all environments except a

development (dev) environment.
• The template to use in a development (dev) environment is customer.framework.prod_template-1.0.

File published-apis.yaml document objects
File published-apis.yaml contains the following document objects:
• Root object
• API object
• Default template object

Root object

Property Type Required Usage

apis API object Yes The set of APIs to publish. It is possible for the same API name to appear multiple
times in the list. At runtime, the REST framework chooses the configuration with
the most specific match based on the env and server properties.
It is a configuration error for multiple entries to have the same specificity at run-
time. The set of paths for all published APIs must be non-overlapping as well.
If you need to publish two different versions of the same API at the same time,
those APIs must define different baseUrl values to ensure uniqueness. For exam-
ple, use /users/v1.0 and /users/v1.0.1 to make the APIs different.

defaultTemplate Default
template
object

Yes The set of default templates to use with the listed APIs. However, at runtime, the
REST framework uses only a single entry in the list, based on the server and envi-
ronment properties.

Guidewire PolicyCenter 10.1.2 REST API Framework

42 chapter 5: Publishing a REST API

Property Type Required Usage
The REST framework uses the default template for any entry in the APIs list that
does not explicitly define a template.

API object

Property Type Required Usage

name string Yes The fully-qualified name of a Swagger schema to publish.

template string No The fully-qualified name of a Swagger schema to include as the template for this API. If this
value is null, the REST framework uses the default template.

published boolean No The Boolean value indicates whether the REST framework is to publish the API. The default
value is true.
You can use this property in either of the following ways:

• If you choose to use the env and server properties, set this property value to false to
explicitly indicate that a given API must not be published in a particular environment or
server.

• If your PolicyCenter installation uses property substitution, you can set the published
property to an externalized property. In that way you can use property substitution to set
the value to true or false.

env string No The environment to use in attempting to match this configuration element. If the file
specifies the same API multiple times, the REST framework uses the most specific match
based on the API env and server properties.

server string No The server to use in attempting to match this configuration element. If the file specifies the
same API multiple times, the REST framework uses the most specific match based on the API
env and server properties.

Default template object

Property Type Required Usage

name string Yes The fully-qualified name of the template to use as the default for APIs listed under apis that do
not explicitly specify a template property.

env string No The environment to use in attempting to match this configuration element. If the file specifies
the same API multiple times, the REST framework uses the most specific match based on the
API env and server properties.

server string No The server to use in attempting to match this configuration element. If the file specifies the
same API multiple times, the REST framework uses the most specific match based on the API
env and server properties.

Default API templates
In the base configuration, Guidewire provides an example of a default API template called dev_template-1.0,
located in the following location in Studio:

configuration→config→Integration→apis→gw→pl→framework
The default template includes the following pieces.
gw.pl.framework.basic_auth-1.0

Adds the Swagger security specification that supports HTTP Basic Authentication, necessary so that Swagger UI
and other tools can provide an appropriate authentication pop-up.

gw.pl.framework.standard_definitions-1.0
Adds standard definitions for all custom headers supported by the REST framework and all standard error codes
that the framework returns.

Guidewire PolicyCenter 10.1.2 REST API Framework

Publishing a REST API 43

gw.pl.framework.api_docs-1.0

Adds a /swagger.json endpoint to every API for retrieving the API's Swagger schema at runtime.
Guidewire deliberately implements each of these pieces as its own schema. This permits you to choose to include
any or all of these pieces in creating your own templates.

Changes to file published-apis.yaml
Guidewire permits changes to file published-apis.yaml during a rolling (configuration) upgrade. The
configuration verification mechanism:
• Reports both additions and removals to the set of APIS as 'compatible'.
• Reports changes to the server, environment, or template values as 'equal'.

Be aware that it is possible to add or remove APIs by doing any of the following:
• Add and remove API entries in file published-apis.yaml.
• Change the value of a property on a published API entry.

Guidewire permits these kinds of changes in a rolling upgrade so as to make it possible to enable a new API during a
configuration upgrade, as well to provide the ability to remove an API that is no longer in use.

Forming the API URL
Each API listed in published-apis.yaml is addressable through the REST servlet. You form the path for each
Swagger operation by adding the API base path to the path for the operation. For example, suppose that an API has a
base path (basePath) of /users/v1. In this case, a GET /users/{userId} operation then has a URL of /
users/v1/users/{userId} relative to the servlet.
The full URL at runtime depends upon the application server URL, the servlet context, and REST servlet mapping.
Thus, the full URL format looks something similar to the following:
<schema> + <appserver URL> + ":" + <appserver port> + <servlet context>
 + <REST servlet path> + <API basePath> + <operation path>

For example, suppose that you have the following values for a PolicyCenter installation:

Application server mycompany.com

Port 8180

Servlet context /pc

Default REST servlet mapping /rest/*

Using these values, the following string defines the full URL for the GET operation for a user with ID 12345:
https://mycompany.com:8180/pc/rest/user/v1/users/12345

Guidewire PolicyCenter 10.1.2 REST API Framework

44 chapter 5: Publishing a REST API

chapter 6

Creating a simple Activities API

The following topics describe how to create a simple Activities API using the PolicyCenter REST API framework.
The example Activities API provides the following functionality:
• Retrieves a list of activities
• Retrieves a single activity
• Creates a new activity
• Updates an existing activity

API design

As you think about what it takes to build an Activities REST API, consider the following:
• What HTTP operations does the API need to provide the required functionality
• What types of endpoints (URLs) and query parameters does the API need
• What kind of JSON inputs and outputs does the API need

For inspiration, you can work either from either the client perspective or the system perspective, or ideally a mix of
both. As you work in constructing the API, think about the following items:
• What fields exist on the PolicyCenter Activity entity?
• What domain properties exist on the Activity entity?
• What fields does the PolicyCenter application expose on the desktop pages, or, in the context of a policy, an

account, or a job.

Understanding the Activity API data model
There are a few typical API operations that you would usually want to implement. These operations include the
following:
• Retrieving a collection of resources
• Retrieving a single resource
• Creating a new resource
• Updating a resource

The example Activities API provides an example of the types of HTTP operations and endpoints that you would
most likely want to create.

Creating a simple Activities API 45

API functionality HTTP operation and endpoint

Retrieve a list of activities GET /activities

Retrieve a single activity GET /activities/{activityId}

Create a new activity POST /activities

Update an activity PATCH /activities/{activityId}

You design the inputs and outputs to the Activities API operations in JSON schema files.

Example GET /activities response

The following code sample illustrates what a possible JSON response to a GET /activities operation could look
like. Understanding what you want the output to look like helps you determine how to structure the JSON schema
file.
[
 "assignedUser": {
 "displayName": "Alice Applegate",
 "publicId": "pc:305",
 "username": "aapplegate"
 },
 "escalated": false,
 "escalationDate": "2018-04-23T16:22:23.976Z",
 "mandatory": true,
 "priority": "high",
 "publicId": "pc:203",
 "status": "open",
 "subject": "Action Required",
 "targetDate": "2018-04-23T16:22:23.976Z"
]

Example GET /activities/{activityId} response

The following code sample illustrates what a possible JSON response to a GET /activities/{activityId}
operation for activity pc:203 could look like. Understanding what you want the output to look like helps you
determine how to structure the JSON schema file.
{
 "assignedUser": {
 "displayName": "Alice Applegate",
 "publicId": "pc:305",
 "username": "aapplegate"
 },
 "description": "...",
 "mandatory": false,
 "priority": "normal",
 "publicId": "pc:101",
 "relatedAccount": {
 "accountNumber": "C000212105",
 "displayName": "C000212105",
 "publicId": "pc:ds:1"
 },
 "relatedJob": {
 "displayName": "SUB00000002",
 "jobNumber": "SUB00000002",
 "jobType": "Submission",
 "publicId": "pc:11"
 },
 "relatedPolicy": {
 "displayName": "pc:6",
 "publicId": "pc:6"
 },
 "relatedPolicyPeriod": {
 "displayName": "6996053459, 01/18/2017, 01/18/2018, SUB00000002",
 "policyNumber": "6996053459",
 "publicId": "pc:11"
 },
 "status": "open",
 "subject": "New subject 2",

Guidewire PolicyCenter 10.1.2 REST API Framework

46 chapter 6: Creating a simple Activities API

 "targetDate": "2018-04-18T23:05:53.981Z"
}

Setting basic API functionality
Creating the Activity JSON schema

The Guidewire REST API framework uses JSON schema files to define the input and output for the REST APIs.
Place the JSON schema file that you create in the following directory in Guidewire Studio Project window:

configuration→config→Integrations→schemas→mc→activityapi
The example Activities API uses mc/activityapi as the name space (base path) for the API configuration files that
you need to create in sub-directories of the Studio Integration directory. The file names of the API configuration files
that you create must also contain an ending -1.0 designation. For example, name the JSON file that you create
something similar to the following example:

activityAPI-1.0.schema.json

Use the following fully qualified path to the JSON schema file in code:
mc.activityapi.activityAPI-1.0

IMPORTANT It is important to generate the JSON schema wrapper classes before you construct any
handler class that uses those JSON objects. See “JSON schema wrapper types” on page 27 for more
information.

Example JSON schema for the Activity API

The example JSON schema defines the following JSON objects:
• ActivityDetail object
• ActivitySummary object
• AssignedUser object
• NewActivity object
• RelatedContact object
• RelatedAccount object
• RelatedJob object
• RelatedPolicy object

The following code sample is an example of the JSON schema for the Activities API.
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "definitions": {
 "ActivityDetail" : {
 "type" : "object",
 "properties" : {
 "approvalRationale" : {
 "type" : "string"
 },
 "assignedUser" : {
 "$ref" : "#/definitions/AssignedUser"
 },
 "description" : {
 "type" : "string"
 },
 "escalationDate" : {
 "type" : "string",
 "format" : "date-time"
 },
 "mandatory" : {
 "type" : "boolean"
 },
 "priority" : {

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 47

 "type" : "string",
 "x-gw-type" : "typekey.Priority"
 },
 "publicId" : {
 "type" : "string"
 },
 "relatedAccount" : {
 "$ref" : "#/definitions/RelatedAccount"
 },
 "relatedContact" : {
 "$ref" : "#/definitions/RelatedContact"
 },
 "relatedJob" : {
 "$ref" : "#/definitions/RelatedJob"
 },
 "relatedPolicy" : {
 "$ref" : "#/definitions/RelatedPolicy"
 },
 "relatedPolicyPeriod" : {
 "$ref" : "#/definitions/RelatedPolicyPeriod"
 },
 "status" : {
 "type" : "string",
 "x-gw-type" : "typekey.ActivityStatus"
 },
 "subject" : {
 "type" : "string"
 },
 "targetDate" : {
 "type" : "string",
 "format" : "date-time"
 }
 }
 },
 "ActivitySummary" : {
 "type" : "object",
 "properties" : {
 "assignedUser" : {
 "$ref" : "#/definitions/AssignedUser"
 },
 "escalated" : {
 "type" : "boolean"
 },
 "escalationDate" : {
 "type" : "string",
 "format" : "date-time"
 },
 "mandatory" : {
 "type" : "boolean"
 },
 "priority" : {
 "type" : "string",
 "x-gw-type" : "typekey.Priority"
 },
 "publicId" : {
 "type" : "string"
 },
 "status" : {
 "type" : "string",
 "x-gw-type" : "typekey.ActivityStatus"
 },
 "subject" : {
 "type" : "string"
 },
 "targetDate" : {
 "type" : "string",
 "format" : "date-time"
 }
 }
 },
 "AssignedUser" : {
 "type" : "object",
 "properties" : {
 "displayName" : {
 "type" : "string"
 },
 "publicId" : {
 "type" : "string"
 },

Guidewire PolicyCenter 10.1.2 REST API Framework

48 chapter 6: Creating a simple Activities API

 "username" : {
 "type" : "string"
 }
 }
 },
 "NewActivity" : {
 "properties" : {
 "activityPattern" : {
 "type" : "string"
 },
 "accountNumber" : {
 "type" : "string"
 },
 "subject" : {
 "type" : "string"
 },
 "description" : {
 "type" : "string"
 },
 "jobNumber" : {
 "type" : "string"
 },
 "priority" : {
 "type" : "string",
 "x-gw-type" : "typekey.Priority"
 },
 "mandatory" : {
 "type" : "boolean"
 },
 "targetDate" : {
 "type" : "string",
 "format" : "date-time"
 },
 "escalationDate" : {
 "type" : "string",
 "format" : "date-time"
 }
 }
 },
 "RelatedAccount" : {
 "type" : "object",
 "properties" : {
 "accountNumber" : {
 "type" : "string"
 },
 "displayName" : {
 "type" : "string"
 },
 "publicId" : {
 "type" : "string"
 }
 }
 },
 "RelatedContact" : {
 "type" : "object",
 "properties" : {
 "displayName" : {
 "type" : "string"
 },
 "publicId" : {
 "type" : "string"
 }
 }
 },
 "RelatedJob" : {
 "type" : "object",
 "properties" : {
 "displayName" : {
 "type" : "string"
 },
 "jobNumber" : {
 "type" : "string"
 },
 "jobType" : {
 "type" : "string",
 "x-gw-type" : "typekey.Job"
 },
 "publicId" : {
 "type" : "string"

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 49

 }
 }
 },
 "RelatedPolicy" : {
 "type" : "object",
 "properties" : {
 "displayName" : {
 "type" : "string"
 },
 "publicId" : {
 "type" : "string"
 }
 }
 },
 "RelatedPolicyPeriod" : {
 "type" : "object",
 "properties" : {
 "displayName" : {
 "type" : "string"
 },
 "policyNumber" : {
 "type" : "string"
 },
 "publicId" : {
 "type" : "string"
 }
 }
 }
 }
}

Creating the Activity API Swagger schema
The Guidewire REST API framework uses Swagger (*.swagger.yaml) files to define the API schema. Place the
Swagger schema file that you create in the following directory in Guidewire Studio Project window:

configuration→config→Integrations→apis→mc→activityapi
The example Activities API uses mc/activityapi as the name space (base path) for the API configuration files that
you need to create in sub-directories of the Studio Integration directory. The file names of the API configuration files
that you create must also contain an ending -1.0 designation. For example, name the Swagger file that you create
something similar to the following example:

activityAPI-1.0.swagger.yaml
Use the following fully qualified path to the JSON schema file in code:

mc.activityapi.activityAPI-1.0

Example Swagger schema for the Activity API

The following code sample is a working example of the Swagger schema for the Activities API. Notice that the
example does not yet contain all of the required HTTP operations for this API.
swagger: '2.0'
info:
 description: "APIs for manipulating activities"
 version: '10.0'
 title: "Activities API"
basePath: /mc/activityapi
x-gw-schema-import:
 activities : mc.activityapi.activityAPI-1.0
produces:
 - application/json
consumes:
 - application/json
paths:
 /activities:
 get:
 summary: "Returns a list of activities"
 description: "Returns a list of activities"
 operationId: getActivities
 responses:
 '200':
 description: "Returns a list of activities"

Guidewire PolicyCenter 10.1.2 REST API Framework

50 chapter 6: Creating a simple Activities API

 schema:
 type: array
 items:
 $ref: "activities#/definitions/ActivitySummary"
 post:
 summary: "Creates a new activity"
 description: "Creates a new activity"
 operationId: createActivity
 parameters:
 - name: body
 in: body
 required: true
 schema:
 $ref: "activities#/definitions/NewActivity"
 responses:
 '200':
 description: "Returns the details for the newly-created activity"
 schema:
 $ref: "activities#/definitions/ActivityDetail"
 /activities/{activityId}:
 get:
 summary: "Returns details for a single activity"
 description: "Returns details for a single activity"
 operationId: getActivity
 parameters:
 - $ref: "#/parameters/activityId"
 responses:
 '200':
 description: "Returns details for a single activity"
 schema:
 $ref: "activities#/definitions/ActivityDetail"
parameters:
 activityId:
 name: activityId
 in: path
 type: string
 required: true

IMPORTANT Ensure that you use correct indention to represent the schema hierarchy. Otherwise,
Studio indicates errors and the API does not function properly.

Publishing the Activities API
To make an API active, you must publish the API by adding the API information to file published-apis.yaml,
located in the following directory in the Studio Project window:

configuration→config→Integrations→apis
In the base REST API framework, file published-apis.yaml takes the following form:
apis:
- name: gw.pl.framework.api_list-1.0
- name: gw.pl.system.server_tools-1.0
defaultTemplate:
- name: gw.pl.framework.dev_template-1.0

Notice that the file contains two distinct areas:
• apis - A list of APIs to expose, with each API listing the fully qualified path to its Swagger schema file
• defaultTemplate - One or more default templates to use with the listed APIs

Although not shown in the file example, it is also possible to publish an API or template to a specific environment or
environments. You do this by setting an env environment variable for the affected API or template.

Adding the Activity API to file published-apis.yaml

As file published-apis.yaml exists as part of the Guidewire REST API framework, you need merely to add the
Activities API to the file in the correct location. The following code sample adds the fully qualified path to the
Activities API schema file to file published-apis.yaml:
apis:
- name: gw.pl.framework.api_list-1.0
- name: gw.pl.system.server_tools-1.0

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 51

- name: mc.activityapi.activityAPI-1.0
defaultTemplate:
- name: gw.pl.framework.dev_template-1.0

Creating a basic handler class
Each REST API must have an associated handler class that performs the real work of the API. The handler class
must contain one method for each HTTP operation that the Swagger schema specifies. The method name must
match the operationId value of the associated HTTP operation. The method arguments, if any, must be one of the
following:
• The method arguments must match the list of parameters defined for the HTTP operation.
• The method arguments must be of type RequestContext.

For example, the Activities schema defines a GET operation on the /activities endpoint with an operationId
value of getActivities. Thus, your handler class must contain a method named getActivities.
Your initial version of the handler class must contain methods for each of the following operations. These operations
match those of the example Swagger schema listed in “Creating the Activity API Swagger schema” on page 50.

Operation Endpoint OperationId Class method

GET /activities getActivities getActivities()

GET /activities/{activityId} getActivity getActivity(activityId)

POST /activities createActivity createActivity(body)

Example Activity API handler class

For the example Activities API, you need to create a file named ExampleActivityApiHandler.gosu in the
following Guidewire Studio directory:

gsrc→mc→activityapi

The initial code is a place-holder API handler class for the Activities API. The class method bodies contain no real
functionality at this point. However, it is necessary to have the stub handler class in place in order to publish and test
your work so far.
package mc.activityapi

uses gw.api.json.JsonObject

class ExampleActivitiesApiHandler {

 function getActivities() : List<JsonObject> {
 print(">> getActivities called")
 return new ArrayList<JsonObject>()
 }

 function createActivity(body : JsonObject) : JsonObject {
 print(">> createActivity called")
 print(">> body is:\n" + body.toPrettyJsonString())
 return new JsonObject()
 }

 function getActivity(activityId : String) : JsonObject {
 print(">> getActivity called")
 print(">> activityId: " + activityId)
 return new JsonObject()
 }
}

In this example, each stub method does the following:
• It prints out the input parameters to the method to the console.
• It returns an empty response of an appropriate type as specified by the JSON response schema.

Guidewire PolicyCenter 10.1.2 REST API Framework

52 chapter 6: Creating a simple Activities API

Specifying the API handler class in Swagger schema

You must associate your handler class with the Activities API. You do this in the Swagger schema, by adding a
value for x-gw-apihandler to the schema, for example:
x-gw-apihandlers:
 mc.activityapi.ExampleActivitiesApiHandler

Thus, file activityAPI-1.0.swagger.yaml must contain an entry for x-gw-apihandler similar to the following:
swagger: '2.0'
info:
 description: "APIs for manipulating activities"
 version: '10.0'
 title: "Activities API"
basePath: /mc/activityapi
x-gw-schema-import:
 activities : mc.activityapi.activityAPI-1.0
x-gw-apihandlers:
- mc.activityapi.ExampleActivitiesApiHandler
...

Next steps

Recompile the configuration code and stop and restart the application server for PolicyCenter to pick up these
changes.

Testing your work
At a point, you can test the work that you have done so far. To do so, you need to open Swagger UI tool by
navigating to the follow URL in a browser window:

host:8180/pc/resources/swagger-ui

Replace host with the actual server name. For example, replace host with localhost if running the PolicyCenter
application server on your local machine.

Working with Swagger UI

After you open Swagger UI, you can perform the following types of tasks:
• Set the user name and password credentials in the Authorize dialog.
• See the list of published APIs available on this host.
• See the Swagger schema for the currently viewed API.

To view the list of published APIs, click the first GET / link in the list. You then need to click Try it out and then
Execute. If successful, Swagger UI returns a list of published APIs available on the application server. The list looks
similar to the following example. Notice that the docs element lists the URL for each published API.
{
 "/apis": {
 "basePath": "/apis",
 "description": "Dynamically lists the APIs that are available",
 "docs": "http://localhost:8180/pc/rest/apis/swagger.json",
 "title": "API List"
 },
 "/example/v1": {
 "basePath": "/mc/activityapi",
 "description": "APIs for manipulating activities",
 "docs": "http://localhost:8180/pc/rest/mc/activityapi/swagger.json",
 "title": "Activities API"
 },
 "/system/v1/server": {
 "basePath": "/system/v1/server",
 "description": "This API is related to system server resources.\n",
 "docs": "http://localhost:8180/pc/rest/system/v1/server/swagger.json",
 "title": "System tools server API"
 }
}

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 53

Viewing and testing the Activities API

Copy the docs URL for the Activities API and paste it into the Explore field. After you click Explore, Swagger UI
generates the HTTP operations for the Activities API. Use Swagger UI functionality to test each API endpoint and
operation defined in the Swagger schema.
At this point, there is no backing functionality for the API operations. However, do not continue defining the
Activities API if Swagger UI or the API operations generate any kind of error message. Fix any errors with your
defined configuration files before continuing the API development process.

Adding more API fuctionality
Getting activities

To add functionality for the getActivities method of the API handler class, you need to do the following:
• Create an integration mapping file that maps the API root objects into JSON data that conforms to the JSON

schema document for the Activities API.
• Update the getActivities method to use the JSON mapper to return the required list of activities.

Creating a JSON mapper file

Each integration mapping file can have any number of integration mappers defined in it. Each integration mapper
defines a single entry point into the mapping transformation. An integration mapper takes a single input object and
transforms it into JSON that matches an output schema. Each integration mapper contains mapping properties that
correspond to each property in the output schema.
For the getActivities method, you need to create a mapper file named activityAPI-1.0.mapping.json in the
following directory in the Studio Project window:

configuration→config→Integration→mappings→mc→activityapi
Your updated mapper file needs to contain code similar to the following example:
{
 "schemaName": "mc.activityapi.activityAPI-1.0",
 "mappers": {
 "ActivitySummary" : {
 "schemaDefinition" : "ActivitySummary",
 "root" : "entity.Activity",
 "properties" : {
 "assignedUser" : {
 "path" : "Activity.AssignedUser",
 "mapper" : "#/mappers/AssignedUser"
 },
 "escalated" : {
 "path" : "Activity.Escalated"
 },
 "escalationDate" : {
 "path" : "Activity.EscalationDate"
 },
 "mandatory" : {
 "path" : "Activity.Mandatory"
 },
 "priority" : {
 "path" : "Activity.Priority"
 },
 "publicId" : {
 "path" : "Activity.PublicID"
 },
 "status" : {
 "path" : "Activity.Status"
 },
 "subject" : {
 "path" : "Activity.Subject"
 },
 "targetDate" : {
 "path" : "Activity.TargetDate"
 }
 }

Guidewire PolicyCenter 10.1.2 REST API Framework

54 chapter 6: Creating a simple Activities API

 },
 "AssignedUser" : {
 "schemaDefinition" : "AssignedUser",
 "root" : "entity.User",
 "properties" : {
 "displayName" : {
 "path" : "User.DisplayName"
 },
 "publicId" : {
 "path" : "User.PublicID"
 },
 "username" : {
 "path" : "User.Credential.UserName"
 }
 }
 }
 }
}

Adding functionality to handler method getActivities

Handler class ExampleActivitiesApiHandler defines the methods that support the Activities API. This class exists
in the following directory in the Studio Project window:

configuration→gsrc→mc→activityapi
The getActivities handler method uses the ActivitySummary declaration to produce a List<TransformResult>
as a result. The code for the getActivities handler method looks similar to the following example.
function getActivities() : List<TransformResult> {
 var query = Query.make(Activity)
 var resultSet = query.select()
 var mapper = JsonConfigAccess.getMapper("mc.activityapi.activityAPI-1.0", "ActivitySummary")

 return mapper.transformObjects(resultSet)
}

Next steps

After adding the mapper file in Studio and updating the API handler file, do the following:
• Recompile the PolicyCenter application
• Restart the application server

You need to restart the application server in order for PolicyCenter to recognize the new mapper file. In general, you
need to restart the application server once only for PolicyCenter to recognize a newly added file. Thereafter, the
server recognizes subsequent changes to the file.

Getting activity detail
To add functionality for the getActivity method of the API handler class, you need to do the following:
• Update the integration mapping file with a mapper for the ActivityDetail schema and related pieces.
• Update the getActivity handler method to load the activity with the specified activityId from the database

and return it as a TransformResult object.

Adding objects to the JSON mapper file

Mapping file activityAPI-1.0.mapping.json exists in the following directory in the Studio Project window:
configuration→config→Integration→mappings→mc→activityapi

Update your mapper file and add code similar to the following example in an appropriate place:
"ActivityDetail" : {
 "schemaDefinition" : "ActivityDetail",
 "root" : "entity.Activity",
 "properties" : {
 "approvalRationale" : {
 "path" : "Activity.ApprovalRationale"
 },
 "assignedUser" : {

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 55

 "path" : "Activity.AssignedUser",
 "mapper" : "#/mappers/AssignedUser"
 },
 "description" : {
 "path" : "Activity.Description"
 },
 "escalationDate" : {
 "path" : "Activity.EscalationDate"
 },
 "mandatory" : {
 "path" : "Activity.Mandatory"
 },
 "priority" : {
 "path" : "Activity.Priority"
 },
 "publicId" : {
 "path" : "Activity.PublicID"
 },
 "relatedAccount" : {
 "path" : "Activity.Account",
 "mapper" : "#/mappers/RelatedAccount"
 },
 "relatedContact" : {
 "path" : "Activity.Contact",
 "mapper" : "#/mappers/RelatedContact"
 },
 "relatedJob" : {
 "path" : "Activity.Job",
 "mapper" : "#/mappers/RelatedJob"
 },
 "relatedPolicy" : {
 "path" : "Activity.Policy",
 "mapper" : "#/mappers/RelatedPolicy"
 },
 "relatedPolicyPeriod" : {
 "path" : "Activity.PolicyPeriod",
 "mapper" : "#/mappers/RelatedPolicyPeriod"
 },
 "status" : {
 "path" : "Activity.Status"
 },
 "subject" : {
 "path" : "Activity.Subject"
 },
 "targetDate" : {
 "path" : "Activity.TargetDate"
 }
 }
},
"RelatedAccount" : {
 "schemaDefinition" : "RelatedAccount",
 "root" : "entity.Account",
 "properties" : {
 "accountNumber" : {
 "path" : "Account.AccountNumber"
 },
 "displayName" : {
 "path" : "Account.DisplayName"
 },
 "publicId" : {
 "path" : "Account.PublicID"
 }
 }
},
"RelatedContact" : {
 "schemaDefinition" : "RelatedContact",
 "root" : "entity.Contact",
 "properties" : {
 "displayName" : {
 "path" : "Contact.DisplayName"
 },
 "publicId" : {
 "path" : "Contact.PublicID"
 }
 }
},
"RelatedJob" : {
 "schemaDefinition" : "RelatedJob",
 "root" : "entity.Job",

Guidewire PolicyCenter 10.1.2 REST API Framework

56 chapter 6: Creating a simple Activities API

 "properties" : {
 "displayName" : {
 "path" : "Job.DisplayName"
 },
 "jobNumber" : {
 "path" : "Job.JobNumber"
 },
 "jobType" : {
 "path" : "Job.Subtype"
 },
 "publicId" : {
 "path" : "Job.PublicID"
 }
 }
},
"RelatedPolicy" : {
 "schemaDefinition" : "RelatedPolicy",
 "root" : "entity.Policy",
 "properties" : {
 "displayName" : {
 "path" : "Policy.DisplayName"
 },
 "publicId" : {
 "path" : "Policy.PublicID"
 }
 }
},
"RelatedPolicyPeriod" : {
 "schemaDefinition" : "RelatedPolicyPeriod",
 "root" : "entity.PolicyPeriod",
 "properties" : {
 "displayName" : {
 "path" : "PolicyPeriod.DisplayName"
 },
 "policyNumber" : {
 "path" : "PolicyPeriod.PolicyNumber"
 },
 "publicId" : {
 "path" : "PolicyPeriod.PublicID"
 }
 }
}

Adding functionality to handler method getActivity

Handler class ExampleActivitiesApiHandler defines the methods that support the Activities API. This class exists
in the following directory in the Studio Project window:

configuration→gsrc→mc→activityapi

The getActivty handler method uses a private method to retrieve the specified activity from the database using the
activity ID. The method then uses the mapper declaration in generating the object that the method returns.

function getActivity(activityId : String) : TransformResult {
 var activity = loadActivityById(activityId)
 var mapper = JsonConfigAccess.getMapper("mc.activityapi.activityAPI-1.0", "ActivityDetail")
 return mapper.transformObject(activity)
}

private function loadActivityById(activityId : String) : Activity {
 var activity = Query.make(Activity).compare(Activity#PublicID, Relop.Equals, activityId).select().AtMostOneRow
 if (activity == null) {
 throw new NotFoundException("No activity was found with id " + activityId)
 }
 return activity
}

Next steps

After adding the mapper file in Studio and updating the API handler file, do the following:
• Recompile the PolicyCenter application
• Restart the application server

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 57

Creating an activity
The API schema (file activityAPI-1.0.swagger.yaml) defines a POST operation on the /activities endpoint.
This HTTP operation creates a new activity. Gosu handler class ExampleActivitiesApiHandler provides the
functionality for the example Activities API. You need to update the stub createActivity method in this class to
perform the following work:
• Accept a body argument that provides the details of the activity to create.
• Load the provided activityPattern by code and validate it.
• Load the account using the provided accounNumber.
• Check that the account permits additional activities to be added to it.
• Create a transaction for the result in a new bundle.
• Use the already defined mapper for ActivityDetail to produce the method response.

Adding functionality to handler method createActivity

Updating class ExampleActivitiesApiHandler to provide the functionality for creating a new activity requires that
you update the createActivity method. This class exists in the following directory in the Studio Project window:

configuration→gsrc→mc→activityapi

The following code sample illustrates an updated createActivity method , as well as, the use of several private
functions to perform associated work.
function createActivity(body : JsonObject) : TransformResult {
 var activityPattern = loadActivityPattern(body.get("activityPattern") as String)
 var accountNumber = body.get("accountNumber") as String

 if (accountNumber == null) {
 throw new UnsupportedOperationException("Only linking through accountNumber is currently supported")
 }
 var account = loadAccount(accountNumber)
 if (account.AccountStatus == AccountStatus.TC_WITHDRAWN) {
 throw new BadInputException("The associated account has been withdrawn")
 }

 var activity : Activity
 gw.transaction.Transaction.runWithNewBundle(\b -> {
 activity = activityPattern.createAccountActivity(b, activityPattern, account,
 body.get("subject") as String,
 body.get("description") as String,
 null,
 body.get("property") as Priority,
 body.get("mandatory") as Boolean,
 body.get("targetDate") as Date,
 body.get("escalationDate") as Date)
 })

 var mapper = JsonConfigAccess.getMapper("mc.activityapi.activityAPI-1.0", "ActivityDetail")
 return mapper.transformObject(activity)
}

private function loadActivityPattern(activityPatternCode : String) : ActivityPattern {
 var activityPattern = ActivityPattern. finder.getActivityPatternByCode(activityPatternCode)
 if (activityPattern == null) {
 throw new BadInputException("No activity pattern was found with code " + activityPatternCode)
 }

 return activityPattern
}

//-----------------------PRIVATE FUNCTIONS--------------------------
private function loadAccount(accountNumber : String) : Account {
 var account = Account. finder.findAccountByAccountNumber(accountNumber)
 if (account == null) {
 throw new BadInputException("No account exists with account number " + accountNumber)
 }
 return account
}

Guidewire PolicyCenter 10.1.2 REST API Framework

58 chapter 6: Creating a simple Activities API

Next steps

After adding the mapper file in Studio and updating the API handler file, do the following:
• Recompile the PolicyCenter application
• Restart the application server

Testing your work

To test your work, you need to create a POST /activities request with a request body that contains the necessary
activity information. To determine what information to include in the request body, review the definition for
NewActivity in the JSON mapping file.
The following example JSON indicates the information that you need to include in the request body. Replace the
placeholder values in the example with actual values.
{
 "accountNumber": "string",
 "activityPattern": "string",
 "description": "string",
 "escalationDate": "2019-11-14T18:06:32.150Z",
 "jobNumber": "string",
 "mandatory": true,
 "priority": "string",
 "subject": "string",
 "targetDate": "2019-11-14T18:06:32.150Z"
}

In testing your work, you can use Swagger UI or Postman to create and send the request to the application server, for
example.

Updating an activity
So far, the Activities API provides a few basic GET and POST operations for activities. However, it is common to
want to update an application resource as well. This action requires a PATCH operation on the specified resource. The
newly designed API adds a PATCH /activities/{activityId} operation that provides the following functionality:
• It marks the schema properties on the ActivityDetail JSON object that are not for update as read-only
• It marks the schema properties on the ActivityDetail JSON object that are non-nullable as required
• It adds a checksum property to the ActivityDetail JSON object that maps to the bean version of the activity
• It returns the result as a PATCH /activities/{activityId} operation

Adding read-only properties to the JSON schema

The JSON schema file for the Activities API, activityAPI-1.0.schema.json, exists in the following directory in
the Guidewire Studio Project window:

configuration→config→Integrations→schemas→mc→activityapi
The following example schema updates the JSON ActivityDetail object to mark some properties as read-only, as
well as, add a checksum property.
"ActivityDetail" : {
 "type" : "object",
 "properties" : {
 "approvalRationale" : {
 "type" : "string"
 },
 "assignedUser" : {
 "$ref" : "#/definitions/AssignedUser",
 "readOnly" : true
 },
 "checksum" : {
 "type" : "string"
 },
 "description" : {
 "type" : "string"
 },
 "escalationDate" : {
 "type" : "string",

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 59

 "format" : "date-time"
 },
 "mandatory" : {
 "type" : "boolean"
 },
 "priority" : {
 "type" : "string",
 "x-gw-type" : "typekey.Priority"
 },
 "publicId" : {
 "type" : "string",
 "readOnly" : true
 },
 "relatedAccount" : {
 "$ref" : "#/definitions/RelatedAccount",
 "readOnly" : true
 },
 "relatedContact" : {
 "$ref" : "#/definitions/RelatedContact",
 "readOnly" : true
 },
 "relatedJob" : {
 "$ref" : "#/definitions/RelatedJob",
 "readOnly" : true
 },
 "relatedPolicy" : {
 "$ref" : "#/definitions/RelatedPolicy",
 "readOnly" : true
 },
 "relatedPolicyPeriod" : {
 "$ref" : "#/definitions/RelatedPolicyPeriod",
 "readOnly" : true
 },
 "status" : {
 "type" : "string",
 "x-gw-type" : "typekey.ActivityStatus",
 "readOnly" : true
 },
 "subject" : {
 "type" : "string"
 },
 "targetDate" : {
 "type" : "string",
 "format" : "date-time"
 }
 }
}

Adding a PATCH operation to the API schema

The API Swagger schema file, activityAPI-1.0.swagger.yaml, exists in the following directory in Guidewire
Studio Project window:

configuration→config→Integrations→apis→mc→activityapi

The following code sample illustrates how to add a new PATCH operation to the /activities/{activityId}
endpoint in the Swagger schema.
/activities/{activityId}:
 patch:
 summary: "Updates the details of a single activity"
 description: "Updates the details of a single activity"
 operationId: updateActivity
 parameters:
 - $ref: "#/parameters/activityId"
 - name: body
 in: body
 required: true
 schema:
 $ref: "activities#/definitions/ActivityDetail"
 responses:
 '200':
 description: "Returns details of the updated activity"
 schema:
 $ref: "activities#/definitions/ActivityDetail"

Guidewire PolicyCenter 10.1.2 REST API Framework

60 chapter 6: Creating a simple Activities API

Adding 'checksum' to the JSON mapper file

The integration mapper file, activityAPI-1.0.mapping.json, exists in the following directory in the Studio
Project window:

configuration→config→Integration→mappings→mc→activityapi
To add the new checksum property to the mapper file, add the following code underneath properties in the
ActivityDetail definition.
"checksum" : {
 "path" : "Activity.BeanVersion.toString()"
}

Creating the necessary JSON wrapper classes

The API handler code uses wrapper classes for the JSON objects that the code manipulates. You must create the
necessary wrapper classes before you update the Activity API handler class. See “Generate schema wrapper classes”
on page 27 for details.

IMPORTANT You must do this step before you start to update the handler class updateActivity
method.

Adding method updateActivity to the handler class

To provide functionality for the PATCH /activity/{activityId} operation, you need to add a method to support
the new functionality to the ExampleActivitiesApiHandler handler class. As the operationId for the PATCH
operation is updateActivity, you need to add an updateActivity method to the handler class.
The following code sample illustrates how to construct an updateActivity method on
ExampleActivitiesApiHandler class.

function updateActivity(activityId : String, body : JsonObject) : TransformResult {

 var activity = loadActivityById(activityId)
 var activityDetail = ActivityDetail.wrap(body)

 gw.transaction.Transaction.runWithNewBundle(\b -> {
 activity = b.add(activity)
 activity.ApprovalRationale = activityDetail.approvalRationale ?: activity.ApprovalRationale
 activity.Description = activityDetail.description ?: activity.Description
 activity.EscalationDate = activityDetail.escalationDate ?: activity.EscalationDate
 activity.Mandatory = activityDetail.mandatory ?: activity.Mandatory
 activity.Priority = activityDetail.priority ?: activity.Priority
 activity.Subject = activityDetail.subject ?: activity.Subject
 activity.TargetDate = activityDetail.targetDate ?: activity.TargetDate
 })

 var mapper = JsonConfigAccess.getMapper("mc.activityapi.activityAPI-1.0", "ActivityDetail")
 return mapper.transformObject(activity)
}

Next steps

You must do the following to test your work:
• Run codegen to generate the necessary Java wrapper classes for the JSON objects used by the class methods.
• Recompile your work.
• Restart the application server.

Setting user permissions
To secure and restrict access to Guidewire objects, PolicyCenter assigns various roles to each individual user. Each
role is a collection of one or more permissions. Each permission controls what a user is able to see or do in a certain
area of the application. Guidewire calls permissions that apply to specific user interface elements or data model
entities system permissions.

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 61

In general, you set system permissions through the use of the x-gw-permissions attribute in the API Swagger
schema. For example, to give the ability for a user to create an activity, add something similar to the following to the
API schema file:
x-gw-permissions:
- actcreate

Guidewire recommendations

Guidewire recommends the following:
• If the system permission does not depend on an actual entity object, place the system permission in the API

Swagger schema.
• If the permission applies to a specific entity object, place the logic for that permission in the appropriate API

handler method.

Setting user permissions for GET /activities
There are many ways to update the ExampleActivitiesApiHandler.getActivities handler method to check user
permissions for certain actions. This example presents a simple solution to the problem:
• Unrestricted user su can view activities for all users
• Individual users can view their own activities only

To provide permission checking on the GET /activities/{activityId} operation, you need to update the
following methods in the ExampleActivitiesApiHandler API handler class:
• getActivities

• loadActivityById

Adding the assignedUser parameter to the Swagger schema

First, you need to add a parameter for assignedUser to the GET /activities definition in file
activityAPI.swagger.yaml so that the parameter is available to the handler class.
/activities:
 get:
 ...
 parameters:
 - name: assignedUser
 in: query
 type: string
 ...

Adding functionality to handler method getActivities

Class ExampleActivitiesApiHandler exists in the following directory in the Studio Project window:
configuration→gsrc→mc→activityapi

The following code fragment illustrates how to add logic to that permits unrestricted user su to view all activities
and the calling user to view only activities associated with that user.

function getActivities(assignedUser : String) : List<TransformResult> {
 var query = Query.make(Activity)
 if (assignedUser != null) {
 var credential = Query.make(Credential).compare(Credential#UserName, Relop.Equals,
assignedUser).select().AtMostOneRow
 if (credential == null) {
 throw new BadInputException("No user was found with username " + assignedUser)
 }
 var user = Query.make(User).compare(User#Credential, Relop.Equals, credential).select().AtMostOneRow
 query.compare(Activity#AssignedUser, Relop.Equals, user)
 }

 var resultSet = query.select()
 var mapper = JsonConfigAccess.getMapper("mc.activityapi.activityAPI-1.0", "ActivitySummary")

Guidewire PolicyCenter 10.1.2 REST API Framework

62 chapter 6: Creating a simple Activities API

 return mapper.transformObjects(resultSet)
}

Adding functionality to private handler method loadActivityById

In modifying the ExampleActivitiesApiHandler class, it makes sense to put the view permission check in the
loadActivityById method. In doing so, it provides a means to make the following two conditions return the same
error message:
• Bad activity ID
• No permission to view

Thus, a user without the permission to view an activity cannot tell if the URL is valid or not.
private function loadActivityById(activityId : String) : Activity {
 var activity = Query.make(Activity).compare(Activity#PublicID, Relop.Equals, activityId).select().AtMostOneRow
 if (activity == null || !perm.Activity.view(activity)) {
 throw new NotFoundException("No activity was found with id " + activityId)
 }
 return activity
}

Setting user permissions for POST /activities
In creating a resource, one needs to check for the necessary permissions in the following ways:
• Does the user have ability to view the resource?
• Does the user have the ability to create the resource.

Thus, in order to create activities on an account, the user needs both of the following permissions:
• The ability to view an activity.
• The ability to create an activity.

It is possible to stipulate directly within the Swagger schema file that the user has the necessary system permission
to create an activity resource.

Adding a user permission to the Swagger schema

Add the activity system permission directly in file activityAPI-1.0.swagger.yaml, underneath the POST entry, as
shown.

/activities:
 post
 summary: "Creates a new activity"
 description: "Creates a new activity"
 operationId: createActivity
 x-gw-permissions:
 - actcreate
 ...

Next steps

After adding the Swagger schema in Studio and updating the API handler file, do the following:
• Recompile the PolicyCenter application
• Restart the application server

Adding search and sort capabilities
The GET operation on the /activities endpoint on the Activities API is a basic operation that returns the list of
activities in Guidewire PolicyCenter. However, suppose that you want the API to (optionally) restrict the returned

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 63

activity list by assigned user and to (optionally) specify a primary sort column and direction. To provide this
functionality, you need to update the following items:
• The GET operation for /activities in the API Swagger schema
• The getActivities method in handler class ExampleActivitiesApiHandler

Adding additional parameters to the Swagger schema

Guidewire defines the API schema in file activityAPI-1.0.swagger.yaml in the following location in the Studio
Project window:

configuration→config→Integration→apis→mc→activityapi
The following code example adds sortBy and sortDirection parameters to the GET /activities operation. It
uses several enum constructions to define the behavior of the parameters.

/activities
 get:
 summary: "Returns a list of activities"
 description: "Returns a list of activities"
 operationId: getActivities
 parameters:
 - name: assignedUser
 in: query
 type: string
 - name: sortBy
 in: query
 type: string
 enum: ["assignedUser", "escalated", "priority", "status", "subject", "targetDate"]
 default: "priority"
 - name: sortDirection
 in: query
 type: string
 enum: ["asc", "desc"]
 default: "asc"
 responses:
 '200':
 description: "Returns a list of activities"
 schema:
 type: array
 items:
 $ref: "activities#/definitions/ActivitySummary"

Adding functionality to handler class method getActivities

The following code sample updates the ExampleActivitiesApiHandler.getActivities method to provide sort
and search capabilities. This class exists in the following directory in the Studio Project window:

configuration→gsrc→mc→activityapi

function getActivities(assignedUser : String, sortBy : String, sortDirection : String) : List<TransformResult> {

 var query = Query.make(Activity)
 var credential = Query.make(Credential)
 .compare(Credential#UserName, Relop.Equals, assignedUser)
 .select().AtMostOneRow

 if (credential == null) {
 throw new BadInputException("No user was found with username " + assignedUser)
 }

 var user = Query.make(User)
 .compare(User#Credential, Relop.Equals, credential)
 .select().AtMostOneRow

 query.compare(Activity#AssignedUser, Relop.Equals, user)

 var resultSet = query.select()

 var sortColumn : IQuerySelectColumn
 switch(sortBy) {
 case "assignedUser":
 sortColumn = QuerySelectColumns.path(Paths.make(Activity#AssignedUser))
 break
 case "escalated":

Guidewire PolicyCenter 10.1.2 REST API Framework

64 chapter 6: Creating a simple Activities API

 sortColumn = QuerySelectColumns.path(Paths.make(Activity#Escalated))
 break
 case "priority":
 sortColumn = QuerySelectColumns.path(Paths.make(Activity#Priority))
 break
 case "status":
 sortColumn = QuerySelectColumns.path(Paths.make(Activity#Status))
 break
 case "subject":
 sortColumn = QuerySelectColumns.path(Paths.make(Activity#Subject))
 break
 case "targetDate":
 sortColumn = QuerySelectColumns.path(Paths.make(Activity#TargetDate))
 break
 default:
 throw new IllegalArgumentException("Unexpected sortBy argument " + sortBy)
 }

 if ("desc" == sortDirection) {
 resultSet.orderByDescending(sortColumn)
 } else {
 resultSet.orderBy(sortColumn)
 }

 var mapper = JsonConfigAccess.getMapper("mc.activityapi.activityAPI-1.0", "ActivitySummary")
 return mapper.transformObjects(resultSet)
}

Testing search and sort

It is possible to test the updated search and sort functionality in Swagger UI. If running the application server on a
local machine, navigate to the following URL:

localhost:8180/pc/resources/swagger-ui

Enter the URL for the Activities API in the Explore field and test out the GET /activities operation. With the
updated getActivities method, the Swagger UI now shows the following interactive parameter fields:

Field Test case

assignedUser Enter a user name to filter the list of returned activities so that it only includes activities assigned to the
designated user.

sortBy Chose a value from the drop-down list sort activity list by a specific parameter.

sortDirection Chose a value from the drop-down list to determine the list sort order (either ascending or descending).

Filtering activity details
The Guidewire REST API framework supports the use of GraphQL-style filters. This type of filter serves as a white
list of properties to include with object fields that the REST framework materializes and serializes. For example,
suppose that you want to filter the response to a GET /activities/{activityID} operation in the following ways:
• full - Returns all activity detail fields in response to the GET operation.
• basic - Returns only the fields listed in the filter definition file in response to the GET operation.

As the full filter returns all fields, which is the default action, it is not necessary to create a filter definition file for
that specific filter.
To add a filter to the Activities API, you need to perform the following tasks:
• Add a filter definition file in the appropriate subdirectory in the Studio Integration directory that defines the

fields to return.
• Update the Swagger schema file to add a filter parameter to the GET /activities/{activityId} schema

definition.
• Update the getActivity handler class method to use the schema filter parameter to perform business logic

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 65

Creating a filter definition file

Use the version scheme for your filter definition file as you did for the rest of your API configuration files. Describe
the filter in the file name, such as activity_details_basic-1.0.gql. Place your definition file in the following
location in the Guidewire Studio Project window:

Integration→filters→mc→activityapi
The basic filter definition file lists the following activity detail fields:
{
 assignedUser {
 username
 }
 description
 priority
 publicId
 status
 subject
 targetDate
}

Note: You must explicitly add this file type in Studio if Studio does not recognize the *.gql
extension. Use File→Settings→File Types to add the file type.

Adding functionality for filtering to the API schema

You need to update the GET /activities/{activityId} operation in the Swagger API schema to add a new filter
parameter. You find the API schema file, activityAPI-1.0.swagger.yaml, in the following location in the Studio
Project window:

configuration→config→Integration→apis→mc→activityapi
The filter parameter uses an enum to list the names of the available filters, basic and full. The full filter
provides the entire list of fields on the AccountDetail object. As this is the default behavior, there is no need to
create a specific filter for this situation.
/activities/{activityId}
 get:
 summary: "Returns details for a single activity"
 description: "Returns details for a single activity"
 operationId: getActivity
 parameters:
 - $ref: "#/parameters/activityId"
 - name: filter
 in: query
 type: string
 enum: ["basic", "full"]
 default: "full"
 responses:
 '200':
 description: "Returns details for a single activity"
 schema:
 $ref: "activities#/definitions/ActivityDetail"

Adding functionality to handler class method getActivity

Finally, you need to update the ExampleActivitiesApiHandler.getActivity method to handle the new filter
parameter. This class exists in the following directory in the Studio Project window:

configuration→gsrc→mc→activityapi
The following code sample is an example of how to implement the filter parameter in code. Notice that there is no
code to handle the full filter as it is the default behavior.
function getActivity(activityId : String, filter : String) : TransformResult {
 var activity = loadActivityById(activityId)
 var mapper = JsonConfigAccess.getMapper("mc.activityapi.activityAPI-1.0", "ActivityDetail")
 var mappingOptions = new JsonMappingOptions()
 if (filter == "basic") {
 mappingOptions.withFilter("mc.activityapi.activity_details_basic-1.0")
 }
 return mapper.transformObject(activity, mappingOptions)
}

Guidewire PolicyCenter 10.1.2 REST API Framework

66 chapter 6: Creating a simple Activities API

Next steps

After adding updating the API handler file, do the following:
• Recompile the PolicyCenter application.
• Restart the application server.

Setting validation constraints
It is possible to add validation constraints to the JSON objects defined in file activityAPI-1.0.schema.json. For
example, you can define a certain JSON property as being required, or, stipulate the maximum length of a user-
supplied field.
File activityAPI-1.0.schema.json exists in the following directory in the Studio Project window:

configuration→config→schemas→mc→activityapi

Adding validation constraints to the JSON schema

The following example code updates the NewActivity object defined in file activityAPI-1.0.schema.json to set
the length of the subject property to a maximum of 64 characters
"NewActivity" : {
 "properties" : {
 "activityPattern" : {
 "type" : "string"
 },
 "accountNumber" : {
 "type" : "string"
 },
 "subject" : {
 "type" : "string",
 "maxLength" : 64
 },
 "description" : {
 "type" : "string"
 },
 "jobNumber" : {
 "type" : "string"
 },
 "priority" : {
 "type" : "string",
 "x-gw-type" : "typekey.Priority"
 },
 "mandatory" : {
 "type" : "boolean"
 },
 "targetDate" : {
 "type" : "string",
 "format" : "date-time"
 },
 "escalationDate" : {
 "type" : "string",
 "format" : "date-time"
 }
 }
}

Guidewire PolicyCenter 10.1.2 REST API Framework

Creating a simple Activities API 67

Guidewire PolicyCenter 10.1.2 REST API Framework

68 chapter 6: Creating a simple Activities API

chapter 7

The IRestDispatchPlugin plugin

The IRestDispatchPlugin plugin is an optional plugin interface that you can implement to do the following:
• Preprocess incoming REST API requests
• Rewrite outgoing API responses
• Control how and what PolicyCenter logs for each API request

Default plugin implementation

If you do not implement your version of the IRestDispatchPlugin plugin, PolicyCenter uses the default
DefaultRestDispatchPlugin class instead. The default class does the following:
• Performs a minimal rewrite of 401 and 403 errors to remove details of authorization or authentication failure.
• Adds an intentional logging pattern (PLLoggingMarker.REST_REQUEST) that provides detailed information about

each API request suitable for feeding to a modern log system.
It is also possible to use the DefaultRestDispatchPlugin class as the superclass for your plugin implementation as
this class implements the IRestDispatchPlugin interface.

Example of a log message for a successful request

The following server log message is an example of a successful REST API request.

aapplegate e1148f7b-a606-40f5-b43a-f86b3652279b 11:36:54,585 INFO
 REST.Request <RestRequest> REST API Request {path="/activities/v1/activities",
 query="includeTotal=true", pathTemplate="/activities/v1/activities",
 apiFqn="gw.pc.activities.activities-10.0", method="GET", from="0:0:0:0:0:0:0:1",
 user="aapplegate", status=200, error="", elapsedTimeMs=25}

Example of a log message for an unsuccessful request

The following server log message is an example of a REST API request that did not succeed.

aapplegate 7081b3c7-62ce-4897-9987-f7c7226af992 11:39:39,707 INFO
 REST.Request <RestRequest> REST API Request
 {path="/activities/v1/activities/pc:203/notes", query=null,
 pathTemplate="/activities/v1/activities/{activityId}/notes",
 apiFqn="gw.pc.activities.activities-10.0", method="POST", from="0:0:0:0:0:0:0:1",
 user="aapplegate", status=400, error="gw.api.rest.exceptions.BadInputException",
 elapsedTimeMs=2}

The IRestDispatchPlugin plugin 69

Using the IRestDispatchPlugin plugin
The IRestDispatchPlugin interface contains methods to preprocess, handle, and log REST API requests.
Guidewire provides a default implementation class for the plugin, DefaultRestDispatchPlugin. However, if you
want to implement your own implementation class for the IRestDispatchPlugin plugin, keep the following details
in mind.

Preprocessing the request

Use the following methods on the IRestDispatchPlugin interface to perform preprocessing work on the incoming
requests:
• handleReceiveRequest

• handlePreExecute

The preprocessing of the request can occur either prior to the start of the work of handling the request or prior to
invoking the API handler that performs the actual work of the request.
Use preprocessing to set global variables on the method's RequestContext object, or to set any other global context
that needs to be thread-local, such as logging contexts. You can also use preprocessing to log request information
prior to the start of the work of processing the request.

Rewriting the response to the request

Use the rewriteResponse method on the IRestDispatchPlugin interface to rewrite outgoing responses generated
by the request. For example, you can create a lightweight servlet filter to inject global custom response headers or to
implement CORS (cross-origin resource sharing) by rewriting the responses for OPTIONS requests to include the
appropriate CORS headers.

Rewriting errors generated by a request

Use the rewriteErrorInfo method on the IRestDispatchPlugin interface to control exactly what error and
exception information the plugin returns while handling the REST request. It is important to understand that the
plugin invokes the rewriteErrorInfo method only if the response framework or the API handler throws an error or
exception during request processing.
Use your implementation of the rewriteErrorInfo method to define your own specific best practices around
information exposure in error messages. Different environments or different teams have different tolerances for
exposing detailed error information to client systems. As it is possible to provide implementation classes for the
plugin that behave differently in production and development environments, you can specifically set a more
restrictive set of policies to apply to production servers, while allowing development systems to return more detailed
information.

Logging the request activity

The handleRequestProcessed method on the IRestDispatchPlugin interface uses arguments whose values
provide information and context about the processing of the REST request, for example:
• The amount of time that the request took
• The response the request generated
• Any errors or exceptions thrown during the course of processing the request

Guidewire PolicyCenter 10.1.2 REST API Framework

70 chapter 7: The IRestDispatchPlugin plugin

Default implementation class DefaultRestDispatchPlugin
In the base configuration, Guidewire provides a default implementation class for the IRestDispatchPlugin
interface, Gosu class DefaultRestDispatchPlugin. This class implements the following IRestDispatchPlugin
interface methods:
• handleReceiveRequest

• handlePreExecute

• rewriteResponse

• rewriteErrorInfo

• handleRequestProcessed

See “Processing REST requests” on page 71 for information on these methods.
Note: It is also possible to use the DefaultRestDispatchPlugin class as the superclass for your
custom implementation of this plugin.

Processing REST requests
PolicyCenter calls the methods on the plugin IRestDispatchPlugin interface during the processing of all REST
requests. Use the interface methods to control output and logging. As the methods callbacks occur during the
processing of a request, Guidewire recommends that these methods not throw exceptions as it is possible for a an
exception to hide an operational or serialization error.
Public interface IRestDispatchPlugin contains the following public methods.
handleReceiveRequest(requestContext)

PolicyCenter calls the handleReceiveRequest method upon receipt of each REST request. At this point in the
processing of the request, the REST API framework:

• Has not yet determined the proper operation to take. (The API request can request an unsupported path.)
• Has not authenticated the client that called the request.
• Has not checked permissions for the request.

This method takes the following argument only.

Method argument Null? Description

requestContext No A RequestContext object that contains information about this request. See class
RequestContext for useful properties on this object.

If this method throws an exception, it passes the associated ErrorInfo JSON object as the argument to the plugin
handleRequestProcessed method:

• If the exception thrown by the plugin method implements the HasErrorInfo interface, the method passes an
ErrorInfo object to the operationError argument of the handleRequestProcessed method.

• If the exception does not implement the HasErrorInfo interface, the method passes a generic ErrorInfo
object with a response code of 500.

Note: It is possible to implement your own version of this method so that it extracts tracking
information, if you also implement the necessary traceability IDs. In your version of this method,
you can also implement logging of the incoming request, as well. If you do implement your own
version of this method, you need to take into account that, at this stage, the REST request can
potentially be an attack and not a legitimate request.

handlePreExecute(requestContext, user)

PolicyCenter calls the handlePreExecute method just prior to setting up the execution environment for the
requested operation. If the request requires authentication to perform, this method performs authentication of the
user requesting the operation. The handlePreExecute method also determines the correct handler to use to
process the request.

Guidewire PolicyCenter 10.1.2 REST API Framework

The IRestDispatchPlugin plugin 71

This method takes the following arguments.

Method argument Null? Description

requestContext No A RequestContext object that contains information about this request. See class
RequestContext for useful properties on this object.

user Yes A User object that represents the user requesting the operation. It is possible for this value to
be null if the request does not require user authentication.

If this method throws an exception, it passes the associated ErrorInfo JSON object as the argument to the plugin
handleRequestProcessed method:

• If the exception thrown by the plugin method implements the HasErrorInfo interface, the method passes an
ErrorInfo object to the operationError argument of the handleRequestProcessed method.

• If the exception does not implement the HasErrorInfo interface, the method passes a generic ErrorInfo
object with a response code of 500.

rewriteResponse(requestContext, response)

If PolicyCenter calls the operation handler on this request and the handler returned successfully, PolicyCenter
calls this plugin method just prior to serializing (writing) the response to the request.
This method takes the following arguments.

Method argument Null? Description

requestContext No A RequestContext object that contains information about this request. See class
RequestContext for useful properties on this object.

response No The Response object that represents the response to the request. Generally, the method
creates the Response object from the operation handler return value.

The rewriteResponse method returns a Response object, which can simply be the Response object passed to
the method initially. If the request handler was successful in processing the request, the handler returns a
Response object with a 4xx or 5xx code status.
If serialization fails for some reason:

• The rewriteResponse method generates an error of type serializationError.
• The handlerResponse and serializedResponse objects represent different things:

◦ The handlerResponse object contains whatever the request handler returned.
◦ The serializedResponse object contains a 5xxx error code that represents the reason for the server-side

failure.
rewriteErrorInfo(requestContext, errorInfo)

PolicyCenter calls the rewriteErrorInfo method if processing the client request generates an error. This error
can occur during any of the following phases of the request:

• During set up of the request
• During execution of the requested operation
• During serialization (writing) of the response returned from a successful completion of executed operation

This method takes the following arguments.

Method argument Null? Description

requestContext No A RequestContext object that contains information about this request. See class
RequestContext for useful properties on this object.

errorInfo No An ErrorInfo object that represents the error that occurred.

Guidewire PolicyCenter 10.1.2 REST API Framework

72 chapter 7: The IRestDispatchPlugin plugin

Method argument Null? Description
Do not attempt to change the value of the passed-in errorInfo object in this method, as the
rewriteErrorInfo method passes the passed-in object to method handleRequestProcessed.

The rewriteErrorInfo method returns an ErrorInfo object that is one of the following:
• The passed-in ErrorInfo object
• A custom ErrorInfo object that you create

If you want to create your own version of this method that returns a custom ErrorInfo object, add the passed-in
value of the errorInfo argument as a detail of your newly created ErrorInfo object.
PolicyCenter serializes the ErrorInfo object and sends it as the response to the REST request.

handleRequestProcessed(requestContext, elapsedMs, handlerResponse, operationError,
serializedResponse, serializationError, writeException)

PolicyCenter explicitly invokes the handleRequestProcessed method after it finishes processing the request and
after it closes the response output stream. This is to ensure the time spent in this method does not contribute to
the latency of the request call.
This method takes the following arguments.

Method argument Null? Description

requestContext No A RequestContext object that contains information about this request. See class
RequestContext for useful properties on this object.

elapsedMs No The total number of milliseconds (as a primitive long value) that it took for PolicyCenter to
execute any of the other IRestDispatchPlugin plugin methods as well as the API call itself.

handlerResponse Yes The response from the API handler.

operationError Yes An ErrorInfo object generated from determining and then executing the request operation
handler.

serializedResponse Yes Any serialized content returned as the response of the operation handler.

serializationError Yes An ErrorInfo object generated by the serialization process.

writeException Yes An ErrorInfo object generated by an exception in the write operation. Typically, this is a IO
exception at this stage of the request.

The set of arguments for the handleRequestProcessed method depends on whether the request succeeded or
whether the request threw an exception during the processing, serialization, or writing of the response. The
following list describes the overall control flow of a REST request.

Process flow Possible actions

Perform initial set up of
request:

• Determine operation
handler

• Perform user
authentication

• Check permissions

If an error at this stage, the method does the following:
• It populates the operationError argument.
• It sets the values of handlerResponse, serializationResponse, and
serializationError to null.

Invoke the operation handler If successful, the operation handler returns the handlerResponse argument.
If an error occurs at this stage, the method does the following:

• It populates the operationError argument.
• It sets the values of handlerResponse, serializationResponse, and
serializationError to null.

Guidewire PolicyCenter 10.1.2 REST API Framework

The IRestDispatchPlugin plugin 73

Process flow Possible actions

Serialize the operation result The method serializes the result returned in the handlerResponse argument and stores
the serialization in method argument serializedResponse.
If an error occurs at this stage, the method does the following:

• It populates the serializationError argument.
• It sets the value of serializationResponse to null

Write the response to the
output stream

As the final step in the REST request processing flow, PolicyCenter writes one of the
following to the output stream in serialized form:

• serializedResponse
• errorInfo

If an error occurs at this stage, the method does the following:
• It populates writeException argument with the error information.

Thus, by looking at the values of the arguments for this method, you can reconstruct whether PolicyCenter
successfully processed the request. For example, if the request failed, you can determine whether the request
failed because of a client error (such as bad input or a resource that does not exist) or a server error (such as
improper operation of the request handler or the handler returned invalid output). You can also determine whether
the error occurred during request handling, during the attempt to serialize the handler response, or while writing
the serialized response to the output stream.

Logging request activity
In the base configuration, only the handleRequestProcessed method in the DefaultRestDispatchPlugin class
performs logging of the REST request activity by default. The method writes the PLLoggingMarker.REST_REQUEST
traceability marker to the application server log using the information provided by the method arguments.
PolicyCenter explicitly invokes the handleRequestProcessed method after it finishes writing out the request
response. Calling this method after the write operation completes (and the output stream closes) ensures that even if
logging adds some amount of server overhead, it does not impact response latency.

Protected logging methods
Class DefaultRestDispatchPlugin contains a number of protected methods for manipulating the information to
output to the server log files.
The DefaultRestDispatchPlugin class provides the following protected methods.
logClientError(requestContext, elapsedMs, operationError, serializedResponse)

If there is any issue with REST request itself, the issue generates an error of type ErrorInfo (operationError).
The handleRequestProcessed method passes the error to the logClientError method, which, in turn, passes
the error to the standardLogResponse method for output to the server log.

logServerError(requestContext, elapsedMs, operationError, serializedResponse)

If there is any issue with the server processing the request, meaning any error in determining the operation
handler or an error with the handler executing the request, it generates an error of type ErrorInfo
(operationError). The handleRequestProcessed method passes the error to the logServerError method,
which, in turn, passes the error to the standardLogResponse method for output to the server log.

logSerializationError(requestContext, elapsedMs, handlerResponse, operationError,
serializedResponse)

If the attempt to serialize the request response fails, it generates an error of type ErrorInfo
(serializationError). The handleRequestProcessed method passes the error to the
logSerializationError method, which, in turn, passes the error to the standardLogResponse method for
output to the server log.

logWriteException(requestContext, elapsedMs, handlerResponse, operationError,
serializedResponse, serializationError, writeException)

If the attempt to write the request response fails, it is unknown if the client received any part of the response. The
failure generates an error of type Throwable (writeException). The handleRequestProcessed method calls

Guidewire PolicyCenter 10.1.2 REST API Framework

74 chapter 7: The IRestDispatchPlugin plugin

the logWriteException method (instead of the standardLogResponse method) to log information about what
failed in the write operation.

logSuccessfulResponse(requestContext, elapsedMs, handlerResponse, serializedResponse)

If the result of the REST request is successful, the handleRequestProcessed methods passes the request
context, the elapsed time, the handler response, and the serialized response to the logSuccessfulResponse
method. This method, in turn, passes this information to the standardLogResponse method for output to the
server log.

standardLogResponse(requestContext, elapsedMs, serializedResponse, error)

The other logging methods (all except for the logWriteException method) call the standardLogResponse
method to perform the actual work of writing to the server log. This method writes the
PLLoggingMarker.REST_REQUEST marker to the server log by default.
In the base configuration, this method logs the following information:

• path
• query
• pathTemplate
• apiFqn
• method
• user
• status
• error
• elapsed time

For examples of log entries for successful and unsuccessful REST requests, see “The IRestDispatchPlugin
plugin” on page 69

The RequestContext object
The REST API framework uses a RequestContext object to represent information about a single REST API
request. The framework uses RequestContext objects as inputs to the IRestDispatchPlugin methods. It is
possible to pass a RequestContext object to any API handler method by including a parameter of type
RequestContext on the method.

Usage

The RequestContext object serves a number of different functions at runtime. For example, you can use the request
RequestContext object to access the following kinds of information:
• The original HttpServletRequest object for the request in order to obtain raw request information that might

not surface in other ways.
• Headers and path parameters by name, in either deserialized (if explicitly listed in the schema) or raw form.

This type of information is often helpful in writing common infrastructure that multiple API endpoints share.
• Metadata about the request being served such as the SwaggerOperation object, path template, or the fully-

qualified name of the API.
• Other information about the request being handled, such as the negotiated response content type

Working with RequestContext objects
Public interface RequestContext contains the following useful methods for working with RequestContext objects.
getApiFqn()

The method returns the fully-qualified name of the Swagger schema that published this API, if any. The
getApiFqn method is not available with the IRestDispatchPlugin.handleReceiveRequest(RequestContext)
method.

Guidewire PolicyCenter 10.1.2 REST API Framework

The IRestDispatchPlugin plugin 75

getBodyAsBytes()

The method returns the body of the request as a byte[] array.
getBodyAsString()

The method returns the body of the request as a String object.
getHeaderParameterValue(headerName)

The method returns the deserialized value of the named header parameter. This method does not work for
arbitrary request headers. It only works for header parameters listed explicitly as part of the operation. The
getHeaderParameterValue method is not available with the
IRestDispatchPlugin.handleReceiveRequest(RequestContext) method.

getLogger()

The method returns the logger (Logger) in use for logging within this request context.
getOperation()

The method returns the operation information needed to execute this request. The getOperation method is not
available with the IRestDispatchPlugin.handleReceiveRequest(RequestContext) method.

getPathParameterValue(pathName)

The method returns the deserialized value of the given path parameter. The getPathParameterValue method is
not available with the IRestDispatchPlugin.handleReceiveRequest(RequestContext) method.

getPathTemplate()

The method returns the template-formatted path string that the REST API framework matched for this request, if
any. For example, suppose the following:

• The Swagger schema has a base path of /contacts/v1.
• The path item has a path of /contacts/{contactId}.
• The incoming request is to path /contacts/v1/contacts/cc:123.

In this case, the method returns the template-formatted path string as the following:
/contacts/v1/contacts/{contactId}

The getPathTemplate method is not available with the
IRestDispatchPlugin.handleReceiveRequest(RequestContext) method.

getProperty(property)

The method returns a previously stored property value given the property name as input. The input name cannot
be null.

getQueryParameterValue(parameterName)

The method returns the deserialized query parameter value, rather than the raw String value. The method returns
null for both of the following cases:

• Query parameters that appear with no value.
• Query parameters that do not appear at all.

The getQueryParameterValue method is not available with the
IRestDispatchPlugin.handleReceiveRequest(RequestContext) method.

getRawHeaderValue(headerName)

The method takes the name of a request header as input (headerName). The return value is one of the following:
• The raw String value for the given header.
• A comma-separated list of the raw String values if the header appears multiple times in the request.
• A null value if the header is not included in the request.

To retrieve the deserialized value of a header explicitly declared in the schema as a header parameter, use the
getHeaderParameterValue method instead of the getRawHeaderValue method.

getRawPathParameters()

The method returns the set of raw path parameter values extracted from the request path as Map<String,
String>.

Guidewire PolicyCenter 10.1.2 REST API Framework

76 chapter 7: The IRestDispatchPlugin plugin

getRawQueryParameterNames()

The method returns the query parameter names found in this request as Set<String>.
getRawQueryParameterValues(queryParameter)

The method takes the name of a query parameter as input (queryParameter). The return value is one of the
following:

• A List object that contains the values with which the parameter appeared.
• An empty list if the parameter appears without any value.
• A null value if the query parameter does not appear anywhere in the query String.

To retrieve the deserialized value rather than the raw String value, use the getQueryParameterValue method
instead of the getRawQueryParameterValues method.

getRawRequest()

The method returns the raw HttpServletRequest object associated with this request.
getRequestContentType()

The method returns the request content type (as a MediaType object), as specified in the Content-Type header of
the request.

getRequestStartTime()

The method returns the timestamp (as a Date object) for when the API received the REST request.
getResponseContentType()

The method returns the negotiated content type of the API response.
hasQueryParameter(queryName)

The method returns one of the following:
• true - The specified query parameter exists in the request's query string.
• false - The query parameter does not appear on the request's query string.

pushCloseable(block)

The method adds an AutoCloseable object that the REST API framework executes upon completion of the
REST request.

putProperty(property, value)

The method stores property values. It uses the following inputs:
• property - The property name, which cannot be null.
• value - The property value.

The method returns the data type of the value stored in this operation.
setLogger(logger)

The method sets the logger to use for logging with this request context.

Guidewire PolicyCenter 10.1.2 REST API Framework

The IRestDispatchPlugin plugin 77

Guidewire PolicyCenter 10.1.2 REST API Framework

78 chapter 7: The IRestDispatchPlugin plugin

chapter 8

REST servlet processing flow

The following diagram illustrates the processing flow for the REST servlet.

Servlet container
receives request

Reload
configuration Log request Check localization

headers

404
Not Found Error

405
Method Not

Allowed

401
Not authorized

Match path Match HTTP verb Authenticate Check localization
preferences

Check server run
level

503
Service Unavailable

Determine response
type

406
Not Acceptable

Validate content
type

403 Bad Input
415 Unsupported

Media Type

Authorize user

403
Forbidden

Deserialize and
validate input

400
Bad Input

Construct handler Invoke handler Wrap return value

Serialize response Write response Log response

The REST processing flow diagram uses the following steps.
REST servlet processing flow 79

Servlet container receives API request
The servlet container handles the first step in the processing chain, before the servlet container invokes the REST
servlet.

Reload configuration if necessary
If the application server is running in development mode:

• The REST framework checks every incoming request to determine if any relevant configuration files have
changed since the last request.

• The REST framework checks whether a hot swap of Gosu classes has occurred.
For either of these development cases, the REST framework reloads the servlet configuration before processing
the request. Guidewire does not support the reload of the servlet configuration in a production environment.

Log request
The default implementation class for the IRestDispathPlugin plugin provides a means to log REST API
activity.

Check localization headers
Before processing the API request, the REST framework attempts to set up the current language and locale based
on one of the following:

• The values set for custom headers GW-Language and GW-Locale headers
• The value set for the Accept-Language header

Setting the localization for the API request ensures that it is possible to properly localize the rest of the API
request (including any error messages).

Match path
The REST framework determines whether the request URL matches to a defined Swagger path:

• If the framework finds a match, the framework extracts the path parameters.
• If the framework does not find a match, the framework returns a '404 Not Found' status code.

Match HTTP verb
After the framework determines that the path matches, it next determines whether the HTTP verb used in the API
request is one that Guidewire supports for the given path.

• There is a match if the request verb corresponds to a Swagger operation declared on the path, or, if the verb
corresponds to one of the HEAD or OPTIONS HTTP methods that the framework supports automatically.

• There is no match in all other circumstances. If the framework does not find a verb match, the framework
returns a '405 Method Not Allowed' status code.

Authenticate
The REST framework then authenticates the request, if the endpoint in question requires authentication. The
framework authenticates all Swagger operations by default, with the exception of the OPTIONS method, which the
framework supports automatically. The framework returns a '401 Unauthorized' response code if authentication
fails for any reason.
In the base configuration, the framework marks as unauthenticated the /apis endpoint and the /swagger.json
paths that the default development template adds to the API. The framework determines whether to authenticate
HEAD method requests based on whether it authenticates the corresponding GET request.
It is also possible to specify the x-gw-authentication property on an operation as false. This setting instructs
the framework to disable authentication for that particular operation.

Check localization preferences
In working with the request localization, the framework only uses any language preferences set by the user in the
following circumstances:

• The user must have past authentication.
• The API request itself did not specify any GW-Language or GW-Locale headers.

If both of these conditions are true, the framework sets the language and locale for the rest of the request handling
based on the preferences of the authenticated user.

Guidewire PolicyCenter 10.1.2 REST API Framework

80 chapter 8: REST servlet processing flow

Check run level
The REST framework checks the run level of the server against the value set for the x-gw-runlevel attribute
specified on the operation, path, or root Swagger document.
The framework returns a '503 Service Unavailable' response code if the framework determines that the current
run level of the server is inadequate to service the request.

Determine response type
The framework determines the response type, if any, based on a process known as content negotiation. Content
negotiation attempts to match the Accept header of the request with the content types that the API operation
knows how to produce. If the Accept header is present but does not match any of the produced types, the
framework returns a '406 Not Acceptable' response code. If the Accept header is not a valid comma-separated list
of MIME types, the framework returns a '400 Bad Input' response code.

Validate content type
If the API request contains a request body, then REST framework attempts to match the Content-Type of the
request against the types that the API operation can consume.
The framework returns a '400 Bad Input' response code under either of the following circumstances:

• The request contains a body and the API operation does not accept a request payload.
• The specified Content-Type is not a valid MIME type.

The framework returns a '415 Unsupported Media Type' response code if the specified Content-Type does not
match one of the types the operation can consume.

Authorize user
If the operation passes authentication, and, the operation declares any system permissions using the x-gw-
permissions property, the framework checks to see if that the user has all of the permissions required by the
property. The framework returns a '403 Forbidden' response code if the authenticated user is missing any of the
required permissions.

Deserialize and validate input
Before passing the request data to the handler method on the operation, the REST framework validates and
deserializes the input values into POJOs (Plain Old Java Objects).
The framework validates any passed-in parameters according to any validation constraints defined in the
Swagger schema, such as:

• Values that are required
• Values must not exceed, or fall below, a certain numveric value
• Values that follow a pattern

The framework deserializes the input values based on following schema properties:
• type

• format

• x-gw-type

The framework validates and deserializes the input data according to an associated schema under the following
circumstances:

• If the API request produces a response of type application/json
• If the 2xx response code for the operation has an associated schema

The framework returns a '400 Bad Input' exception, with details, if any part of validation or deserialization proces
fails.

Construct handler
The REST framework constructs a new instance of the handler class for each API request.

Guidewire PolicyCenter 10.1.2 REST API Framework

REST servlet processing flow 81

Invoke handler
If the REST framework deems that the API request is valid, the framework invokes the handler method for the
operation. In terms of error handling:

• If the handler method throws an exception that implements the HasErrorInfo interface, the method uses an
ErrorInfo object to produce the response and determine the response code.

• If an exception does not implement the HasErrorInfo interface, the method returns a generic '500 Internal
Server Error' response code.

Wrap return value
After the handler method completes successfully, the REST framework wraps the method return value in a
Response object:

• If the handler method returns a Response object directly, the framework uses that object. The framework
then adding a content type automatically based on the negotiated response type, if the content type is not
already set.

• If the handler method returns null (or void) or some other value, the framework creates a Response object
automatically, with a response code based on the first 2xx response defined on the operation in the Swagger
schema.

If the schema does not define a 2xx responses, it is an error for the handler to return anything other than a
Response object, as otherwise, the framework does not know what status code to assign to the response.

Serialize response
Before the REST framework can return the data, the framework needs to serialize the data into to a String or a
byte[] object:

• If the response code has an associated schema, and the handler methods returns either a JsonObject or
JsonWrapper object, the framework serializes the data according to the specified schema.

• If the framework serializes the data based on the schema, and the handler method returns data that does not
conform to the schema, the framework returns a '500 Internal Server Error' response code. Thus, the
framework can return a 500 error if the handler method declares properties not declared in the schema, or, if
the method sets a value for a property that is not the correct type specified by the schema.

Writer response
After the REST framework completes the serialization of the output from the request handler method, the
framework writes the output to the request output stream.

Log response
As a final step, the REST framework logs the request and its response after the framework writes out the
response, which prevents the client request from having to wait on the log action. In the base configuration, the
framework logs each API request automatically with summary information about the path and operation
requested, the response code, and the time taken to service the request.

Guidewire PolicyCenter 10.1.2 REST API Framework

82 chapter 8: REST servlet processing flow

chapter 9

Guidewire Swagger specification

The Guidewire InsuranceSuite REST API framework supports a subset of the Swagger 2.0 specification. All
properties prefixed with x-gw- are Guidewire extensions to the core Swagger 2.0 specification. The Swagger 2.0
specification specifies all other properties that are not Guidewire extensions.

Note: Review the individual topics for the Swagger elements for a listing of the properties that
Guidewire does not support from the Swagger 2.0. specification.

Swagger file combination

An API contract can span multiple Swagger files. PolicyCenter combines the separate Swagger files as it generates
the final, complete contract for a REST API. The simplest method of combining files is a straight, linear
concatenation of each file's contents, appending one file after the other.
It is possible for PolicyCenter to interpret the concatenated contents of the contract file on an individual property
basis. PolicyCenter uses this behavior to intelligently merge property definitions that span multiple files using a
variety of combination techniques or styles. The following list describes the combination styles that PolicyCenter
supports.

Merge style Description

Merge PolicyCenter merges child objects based on the rules for combining the object.

Merge by key PolicyCenter matches objects based on keys in a map. For example, PolicyCenter merges elements under
"paths" with the same key.

Merge by <x> PolicyCenter uses a key (a tag name or a parameter such as $ref/name/id) to match equivalent items to
merge. PolicyCenter primarily uses this combination style for lists of objects.

Merge of
extensions

PolicyCenter merges extensions objects by taking the first defined value for each key, even if the defined
value is null.

First non-null As PolicyCenter merges N multiple objects, PolicyCenter assigns the first non-null value to the property
that it finds for that object.

Not inherited PolicyCenter uses this style, in general, for default values defined in a root object that it must not propa-
gate with the file. Thus, the property explicitly does not inherit across files.

N/A PolicyCenter treats the entire object that contains the property as an atomic unit and does not merge the
object. PolicyCenter primarily uses this style for a child object contained within a parent object.
PolicyCenter never merges the properties of the child object individually. However, it is possible to replace
the entire child object as a whole.

Guidewire Swagger specification 83

Specifying properties while combining object definitions

If an object definition spans multiple files, properties defined in one file do not need to be respecified in the other
files. For example, if a file adds a property to an object defined in another file, you only need to specify the added
property in the second file.
A best practice is to specify the required properties for an object in the file that initially defines the object.

'Required if published'

PolicyCenter marks a few schema properties as Required if published, which has the following meaning:
• If file published-apis.yaml lists the schema as published, PolicyCenter requires that property.
• If file published-apis.yaml does not list the schema, PolicyCenter does not require that property.

File published-apis.yaml can specify a property as required in the following ways:
• By specifying the property directly
• By inheritance from a combined schema

You see the phrase Required if published in Required properties reference tables in the documentation on the
Swagger specification.

'Documentation only'

The Swagger specification defines many properties that have no effect on the resulting REST API contract or the
framework's runtime behavior. It is still possible to specify the properties for purposes that lie outside the domain of
the framework, such as consumption by third-party tools. The REST API framework ignores the values of these
properties and passes their values through unmodified while parsing the Swagger file. Guidewire indicates this type
of property as Documentation only.
You see the phrase Documentation only in Optional properties reference tables in the documentation on the
Swagger specification.

Swagger document objects
The Swagger root object

The Swagger specification defines a root document object for the API specification. This topic describes the manner
in which the object's properties affect the REST API framework. The topic also describes Guidewire-specific
framework properties added to extend the root object. This topic does not duplicate root object information already
described in the Swagger specification.

Default propagation of property values

Some properties on the root object serve as default values for operations on the root object. It is possible to specify
properties for an operation explicitly, or, it is possible for a property to inherit its value from the root document.
However, PolicyCenter only propagates a property default within a given Swagger file.
Thus, if a particular operation does not explicitly define a certain property, PolicyCenter uses the corresponding
value specified in the root object as the property default value. For example, suppose that the contact-1.0 schema
defines the root-level produces property as ["application/json"]. PolicyCenter treats the value of the root-level
produces property as the default value for any operation defined in that file that does not explicitly specify its own
produces property. Any operation within the file that does not explicitly define the produces property uses the root
object ["application/json"] value as its default value.
However, if file contact_ext-1.0 combines with the contact-1.0 schema file, file contact_ext-1.0 does not
inherit the produces property on the root document. This behavior ensures that root-level default values are always
local to the file in which they exist and that the default values never bleed through to combining files in unexpected
ways.
PolicyCenter only applies default values locally within a single file. Default properties do not propagate to
operations defined in other files.

Guidewire PolicyCenter 10.1.2 REST API Framework

84 chapter 9: Guidewire Swagger specification

Required properties

Property Type Description Combination
style

swagger string Required. Documentation only. Each Swagger file must specify the swagger
property. Guidewire currently requires this value to be 2.0.

Not inherited

info Info object Required if published. Documentation only. Property provides metadata
about the API.

Merged

basePath string Required if published. Property specifies the base path for the API when it is
published. The value must start with a leading slash (/).

First non-null

paths map<string,
Patch item
object>

Required if published. Property specifies the available paths and operations
for the API. The property must start with a '/' character. The property can also
include multiple parts, each separated by a '/' character. Use the '{ }' syntax to
specify a parameter name.
PolicyCenter constructs the full URL by concatenating the following items:

• Application servlet context +
• REST servlet url-mapping string (default is '/rest') +
• basePath property +
• Key of the paths property

For example, given the following components.
• A servlet context of 'http://localhost:8180/pc'
• A default url-mapping string ('/rest')
• A basepath of '/contact/v1'
• A paths key of '/contact/{contactId}'
• A contactId value of 'johnsmith'

The concatenation of these components constructs the following URL:
http://localhost:8180/pc/rest/contact/v1/contact/johnsmith

Merge by key

Optional properties

Property Type Description Combination
style

consumes string[] Property specifies the acceptable input content types at
runtime. It also becomes the default value for any operation
defined in the same file that does not explicitly define the
consumes property.
Each member of the array must be a valid MIME type.

Not inherited

externalDocs External
documentation
object

Documentation only. First non-null

definitions map<string,
JSON schema
object>

Property defines JSON schema definitions inline. You reference
schema definitions defined inline without an alias prefix, for
example:

#/definitions/name

Merged using
the rules defined
in .

host string Property hard codes the host property as PolicyCenter
retrieves the Swagger file at runtime. If not provided,
PolicyCenter uses the host serving the Swagger schema as the
value.
The host property value:

• Must be a valid host name, with no schema or sub-path.
• Can optionally include a port number.

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 85

Property Type Description Combination
style

parameters map<string,
Parameter
object>

Property defines shared parameter definitions. To reference a
parameter definition, use the following syntax:

#/parameters/name
The name variable identifies the actual parameter definition to
reference.

Merge by key

produces string[] Property specifies the output types that the caller can request
in the Accept header. The negotiated content type can affect
how PolicyCenter serializes certain object types. For example,
this property can affect whether PolicyCenter serializes a
JsonObject or TransformResult object type as JSON or XML.
The property acts as the default value for any operation
defined in this same file that does not explicitly define the
produces property.
Each member of the array must be a valid MIME type.

Not inherited

responses map<string,
Response
object>

Property defines shared response definitions. To reference a
response definition, use the following syntax

#/responses/name
The name variable identifies the actual response definition to
reference.

Merge by key

schemes string[] Property hard-codes the schemes[] property as PolicyCenter
retrieves the Swagger schema at runtime. If not provided,
PolicyCenter uses the schema requesting the Swagger schema
as the value.
Each array entry must one of the following types:

• http
• https
• ws
• wss

First non-null

security Security
requirements
object[]

Documentation only. First non-null

securityDefinitions map<string,
Security scheme
object>

Documentation only. Property defines the keys that specify the
names of the security schemes.

Merge by key

tags Tag object[] Documentation only. Merged by tag
name

Guidewire extension properties

Property Type Description Combination
style

x-gw-
apihandlers

string[] Property defines the default list of API handler classes. PolicyCenter
searches the list, in order, to determine the handler class to use as it
binds an operation to a handler. Each array entry must be a valid Gosu
or Java class name.
PolicyCenter uses the root object list only if the individual operation
does not specify an overriding x-gw-apihandlers property.

First non-null

x-gw-combine string[] Property defines additional APIs to combine with the contents of this
file.

Not inherited

Guidewire PolicyCenter 10.1.2 REST API Framework

86 chapter 9: Guidewire Swagger specification

Property Type Description Combination
style

x-gw-cors-
policy

string Property specifies the default CORS policy for all paths in the API,
unless overridden at the path level. If you do not specify a CORS
policy for the API or path, PolicyCenter disables CORS for that
endpoint.

First non-null

x-gw-cors-
policies

map<string,
CORS policy
object>

Property defines the CORS policies that you can reference in the
document root or in the path.

Merge by key

x-gw-
parameters-sets

map<string,
Parameter
object[]>

Property defines a named list of parameters that PolicyCenter can
then use in an operation.

Merge by key -
PolicyCenter
then combines
the array of
parameters in
the set as
specified by the
rules for
parameters on a
path or
operation

x-gw-
permissions

string[] Property defines the default list of system permissions a user must
have to request a particular operation. Each member of the array
must reference a valid SystemPermissionType typecode.
If the authenticated user does not have the required permissions to
request an operation, the operation returns a 403 Forbidden error.
PolicyCenter uses the root object list only if the individual operation
does not specify an overriding x-gw-permissions property.

Not inherited

x-gw-runlevel string Property specifies the required run level of the server in order to
process an operation. If the server is not at the specified run level for
the requested operation, the operation returns a 503 Service Unavail-
able error. PolicyCenter uses this property value as the default value
for any operation that does not specify the x-gw-runlevel explicitly.
PolicyCenter supports the following server run levels:

• NONE
• GUIDEWIRE_STARTUP
• NODAEMONS
• DAEMONS
• MULTIUSER

If the root document or operation does not specify the x-gw-
runlevel property, PolicyCenter uses the NODAEMONS (maintenance)
run level as the default value.

Not inherited

x-gw-schema-
combine

string[] Property specifies additional JSON schemas to combine inline into this
Swagger schema. Adding schemas in this fashion:

• Makes the JSON schema definitions available without a prefix.
• Combines the JSON definitions with any schema definitions in the
file.

Each member of the array must be a fully qualified name of a JSON
schema.

Not inherited

x-gw-schema-
import

map<string1,
string2>

Property maps an alias (string1) to a JSON Schema name (string2).
You can then use the alias to reference definitions in the Schema. The
property key (string1) can be any string. The property value
(string2) must be a fully-qualified JSON Schema.

Merge by key

x-gw-
serialization

Object for
serialization

Property defines default serialization options for any operation that
does not specify the x-gw-serialization property explicitly.

Not inherited

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 87

The Swagger Contact object
This object provides contact information for the exposed API.

Property Type Description Combination style

email string Documentation only. The string value must be in the form of a valid email address. N/A

name string Documentation only. Property provides the identifying name of the contact person or
organization.

N/A

url string Documentation only. The string value must be in the form of a valid URL. N/A

The Swagger External Documentation object
The External Documentation object provides a means to reference an external resource for extended documentation.

Property Type Description Combination style

description string Documentation only. Property provides a short description of the target
documentation.

N/A

url string Documentation only. Property provides the URL for the target documentation. The
string value must be a valid URL.

N/A

The Swagger Header object
The Header object defines header characteristics.

Required properties

Property Type Description Combination style

items Items object Required if type is array. Do not use otherwise. First non-null

type string Required. Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.
Valid values are:

• array
• boolean
• integer
• number
• string

First non-null

Optional properties

Property Type Description Combination style

collectionFormat string Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.
The value must be one of the following:

• csv
• ssv
• tsv
• pipes

First non-null

default Any object
type

Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

88 chapter 9: Guidewire Swagger specification

Property Type Description Combination style
Value needs to be a valid according to the combination of type,
format, and x-gw-type.

description string Documentation only. First non-null

enum anyType[] Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.
Value needs to be a valid according to the combination of type,
format, and x-gw-type.

First non-null

exclusiveMaximum boolean Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

exclusiveMinimum boolean Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

format string Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

maximum number Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

maxItems integer Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

maxlength integer Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

minimum number Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

minItems integer Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

minLength integer Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

multipleOf number Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

pattern string Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

uniqueItems boolean Documentation only. PolicyCenter returns header values on responses
as they are and does not validate the header values.

First non-null

Guidewire extension properties

Property Type Description Combination style

x-gw-export-
enumeration

boolean If set to true, PolicyCenter writes out the typekey values as an enum proper-
ty while creating the Swagger schema for external clients. A value of true is
only valid if the enum property is not set and x-gw-type is a typekey type.
The default is false.

First non-null

x-gw-type string Documentation only. PolicyCenter returns header values on responses as
they are and does not validate the header values.

First non-null

The Swagger Info object
This object provides metadata abut the REST API.

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 89

Property Type Description Combination style

title string Required if published. Documentation only. The title of the application. First non-null

version string Required if published. Documentation only. The version of the
application API, which is not the same as the version of the API
specification.

First non-null

contact Contact object Documentation only. First non-null

description string Documentation only. First non-null

license License object Documentation only. First non-null

termsOfService string Documentation only. First non-null

The Swagger Items object
The Items object provides a limited subset of the properties on the JSON schema Items object. Parameter definitions
that do not have an in property of body use this object. Guidewire does not support the following properties from
the Swagger 2.0 specification on the Items object:
• collectionFormat

• default

• items

• minItems

• maxItems

• uniqueItems

Guidewire specifically does not support nested arrays for parameter types.

Required properties

Property Type Description Combination style

type string Required. Defines the base JSON type for the items. The combination of type, format,
and x-gw-type determines how PolicyCenter deserializes the data into a Java object at
runtime.
The value must be one of the following:

• boolean
• integer
• number
• string

First non-null

Optional properties

Property Type Description Combination
style

enum any[] Specifies a list of values that the input must match. PolicyCenter turns the
enum values in the schema into Java objects at runtime. It then compares
these values against the input values using equals and hashCode methods.
Each element of the array must be a JSON value that PolicyCenter can parse
based on the type, format, and x-gw-type values of the item.

First non-null

exclusiveMaximum boolean Determines if PolicyCenter treats the maximum value as inclusive or exclusive
for purposes of comparison between two values.
Only set a value for this property if you also specify a value for the maximum
property as well.

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

90 chapter 9: Guidewire Swagger specification

Property Type Description Combination
style

exclusiveMinimum boolean Determines if PolicyCenter treats the minimum value of this property as inclu-
sive or exclusive for purposes of comparison between two values.
The default value is false, which means that PolicyCenter treats the value as
inclusive. Only set a value for this property if you also specify a value for the
minimum property as well.

First non-null

format string Defines the base JSON type format for the parameter. The combination of the
type, format, and x-gw-type properties determines how PolicyCenter deseri-
alizes the data into a Java object at runtime.

First non-null

maximum number Specifies the maximum numeric value allowed for an item. PolicyCenter pars-
es this value as a fixed-point value, with no loss of precision. PolicyCenter then
converts the value to an internal Java representation for the purpose of com-
parison at runtime.
The comparison is either inclusive or exclusive of the maximum value, depend-
ing upon the value of the exclusiveMaximum property.
Example 1. If the parameter has a type value of integer and a format value
of int32, the maximum value must be a valid integer. At runtime, PolicyCenter
converts the value to an integer value.
Example 2. If the parameter has a type value of string and a format value of
gw-bigdecimal, PolicyCenter converts the value to BigDecimal at runtime.
Only set a value for this property if the parameter's runtime type is a numeric
type.

First non-null

maxLength integer Determines the maximum length of the property value, inclusive. Only set a
value for the maxLength property if the runtime type is string. If specified,
the value cannot be a negative number.

First non-null

minimum number Specifies the minimum numeric value allowed for an item. PolicyCenter parses
this value as a fixed-point value, with no loss of precision. PolicyCenter then
converts the value to an internal Java representation for the purpose of com-
parison at runtime.
The comparison is either inclusive or exclusive of the minimum value, depend-
ing upon the value of the exclusiveMinimum property.
This property operates in an analogous manner to the maximum property.
Only set a value for this property if the parameter's runtime type is a numeric
type.

First non-null

minLength integer Determines the minimum length of the property value, inclusive. Only set a
value for the minLength property if the runtime type is string. If specified,
the value cannot be a negative number.

First non-null

multipleOf number Specifies that the parameter value must be a multiple of the value of this pa-
rameter. PolicyCenter parses this value as a fixed-point value, with no loss of
precision. PolicyCenter then converts the value to an internal Java representa-
tion for the purpose of comparison at runtime.
Set a value for this property only if the runtime type of the item is a numeric
type.

First non-null

pattern string Specifies a regular expression that the input must match. PolicyCenter does
not explicitly anchor the regular expression by default. If you want the regular
expression to match the entire input string, then you need to explicitly anchor
the expression with ^ and $.
PolicyCenter evaluates the pattern string using the Java regular expression
engine. Thus, the regular expression must match the Java syntax. The Java syn-
tax can have some minor differences from the JavaScript syntax, and, there-
fore, represent a slight deviation from the Swagger specification.
Only set a value for the pattern property if the parameter has a runtime type
of string.

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 91

Guidewire extension properties

Property Type Description Combination
style

x-gw-type string Defines the base JSON type for the parameter. The combination of type,
format, and x-gw-type determines how PolicyCenter deserializes the data
into a Java object at runtime.
Do not specify this value for parameters of type body.

First non-null

x-gw-export-
enumeration

boolean If set to true, PolicyCenter writes out the typekey values as an enum proper-
ty while creating the Swagger schema for external clients. A value of true is
only valid if the enum property is not set and x-gw-type is a typekey type.
The default is false.

First non-null

x-gw-
extensions

map<string,
any>

The values in x-gw-extensions are available to the
IRestValidatorFactoryPlugin plugin if you invoke the plugin to create
custom validators for this parameter.
This value can be an arbitrary map of property keys to values. The key val-
ues can be any string, and the object values can be any object, including
nested JSON objects.

Merge of
extensions

The Swagger License object
The License object provides license information for the exposed REST API.

Property Type Description Combination style

name string Required. Documentation only. The license name used for the API. N/A

url string Documentation only. URL to the license used for the API. The string value must be in
the form of a valid URL.

N/A

The Swagger Operation object
This object describes a single REST API operation on a path.

Required properties

Property Type Description Combination
style

operationId string Required. If not using the AbstractApiHandler class, PolicyCenter uses this
value as the expected name of a method on the API handler class.
The value must be the following:

• A valid Java or Gosu method name
• Unique within this Swagger schema

First non-null

responses map<string,
Response
object>

Required. Defines the set of responses for the operation. All operations must
have at least one response defined:

• If you define a single response with a 2xx response code, PolicyCenter uses
that response code as the default on successful requests.

• If you do not specify a 2xx response code, or if you specify multiple 2xx
response codes, the API handler must return a Response object that
specifies the appropriate response code.

PolicyCenter assumes that 4xx and 5xx response codes are for documentation
purposes only, and are subject to less stringent validation rules.
The keys for this map must be valid HTTP response code strings (for example,
200, or similar) or the string "default".

Merge by key

Guidewire PolicyCenter 10.1.2 REST API Framework

92 chapter 9: Guidewire Swagger specification

Optional properties

Property Type Description Combination style

consumes string[] Overrides any default consumes property declared on the Swagger
root object. An operation that specifies a body parameter must de-
fine also at least one consumed type, either directly or by inheriting
a default value from the root level of the document. This property
determines what input content types are acceptable at runtime.
Each member of the array must be a valid MIME type.

First non-null

deprecated boolean Documentation only. First non-null

description string Documentation only. First non-null

externaDocs External
documentation
object

Documentation only. First non-null

parameters Parameter
object[]

Defines the set of input parameters that this operation accepts. The
operation can override parameters defined at the Path Item level by
defining a parameter with the same name and location.

Merge by logical ID,
which is $ref, if
specified, otherwise,
it is name + in.

produces string[] Overrides any default produces property declared on the root ob-
ject. An operation that specifies a 200 or 201 response must specify
also at least one produced type, either directly or by inheriting a de-
fault value from the root level of the document.
This property determines what output types the caller can request
using the Accept header. The negotiated content type can affect how
PolicyCenter serializes some types. For example, it can affect wheth-
er PolicyCenter serializes a JsonObject object or TransformResult
object as JSON or as XML.
Each member of the array must be a valid MIME type.

First non-null

schemes string[] Documentation only. Members of the array must be one of the
following:

• http
• https
• ws
• wss

First non-null

security Security
requirement
object

Documentation only. First non-null

summary string Documentation only. First non-null

tags string[] Documentation only. First non-null

Guidewire extension properties

Property Type Description Combination
style

x-gw-
apihandler

string Overrides the list of x-gw-apihandler classes defined on the root
Swagger object.

First non-null

x-gw-
authenticated

boolean Determines whether this operation requires authentication. If you do not
specify a value, the default is true.

First non-null

x-gw-
extensions

map<string,
anyType>

The values in x-gw-extensions are available to the
IRestValidatorFactoryPlugin plugin as well as available at runtime us-
ing SwaggerOperation on the RequestContext object.

Merge of
extensions

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 93

Property Type Description Combination
style

This value can be an arbitrary map of property keys to values. The key val-
ues can be any string, and the anyType values can be any object, includ-
ing nested JSON objects.

x-gw-
parameter-sets

string[] Defines a list of parameter sets. PolicyCenter includes the parameters
from the named sets as if the parameters were defined inline in this oper-
ation.
The parameters defined explicitly through the parameters property on
the operation override any parameters included from a parameter set if
the parameters have the same logical key (either $ref or name + id).
Each member of the array must be the name of a parameter set defined
in the x-gw-parameter-sets property on the document root.

Merge by
name

x-gw-
permissions

string[] Overrides any value set for the x-gw-permissions property on the Swag-
ger root object. The authenticated user must have all of the specified per-
missions in order to make a request against this operation. Otherwise,
PolicyCenter returns a 403 Forbidden error.
Each member of the array must be a valid SystemPermissionType type-
code.

First non-null

x-gw-reserve-
db-connection

boolean If set to true, PolicyCenter reserves a database connection for the
duration of the handling of this request. If you do not specify a value, the
default is false.

First non-null

x-gw-runlevel string Overrides any value for x-gw-runlevel set on the Swagger root object.
This value specifies the run level that the server must be at in order to
process requests for a given operation. If the server is not at that run lev-
el, PolicyCenter returns a 503 Service Unavailable error.
PolicyCenter supports the following server run levels:

• NONE
• GUIDEWIRE_STARTUP
• NODAEMONS
• DAEMONS
• MULTIUSER

If you do not specify a value for x-gw-runlevel in the root Swagger docu-
ment or in the operation, the default rune level value is maintenance.

First non-null

x-gw-
serialization

X-GW-
Serialization
object

Overrides any value set for x-gw-serialization on the root Swagger ob-
ject.

First non-null

The Swagger Parameter object
The Parameter object describes a single operation parameter. The combination of the following properties uniquely
define a parameter:
• in

• name

Guidewire PolicyCenter 10.1.2 REST API Framework

94 chapter 9: Guidewire Swagger specification

Required properties

Property Type Description Combination
style

in string Required. Determines the location of the parameter specification. The value must be
one of the following:

• body - The body of the request
• formData - As form data
• header - As a custom header
• path - As part of the path
• query - On the query string

First non-null

items Items
object

Required if type equals array. Defines the type of items, if the parameter is of type
array.

Merge

name string Required. Specifies the name of the parameter:
• body parameters - The value must be body.
• formdata parameters -
• header parameters - The name of the custom header. HTTP header names are
case-insensitive.

• path parameters - The value must match a template variable within the path
whose operation includes this parameter.

• query parameters - The name of the query parameter on the URL.
In all cases, PolicyCenter uses this value to look for a matching parameter in the API
handler method to which it can pass the runtime value.

First non-null

schema Schema
object

Required if in equals body. Defines the schema to which the request body must
conform, if any.

First non-null

type string Required unless in equals body. Defines the base JSON type for the parameter. The
combination of type, format, and x-gw-type determines how PolicyCenter deserializ-
es the data into a Java object at runtime.
You must specify a value for this property if the parameter is in the query, path or
header. Do not specify a value for this property for body parameters.
The property value must be one of the following:

• array
• boolean
• file
• integer
• number
• string

First non-null

Optional properties

Property Type Description Combination
style

$ref string References a parameter defined on the Swagger root document. It is not pos-
sible to combine this property with any other properties.
Use the following syntax for the string value:

#/parameters/name

First non-null

allowEmptyValue boolean Determines if it is permissible to give this parameter an empty value. Use this
property with query parameters only. The default value is false.

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 95

Property Type Description Combination
style

collectionFormat string Determines what separator PolicyCenter uses for splitting parameter values if
the parameter is of type array. The value must be one of the following types:

• csv - Comma separator (default)
• ssv - Space separator
• tsv - Tab separator
• pipes - The '|' character
• multi - Multiple specifications of the parameter, which Guidewire permits

for query parameters only

First non-null

default Any Specifies a default value for the parameter if the parameter is not specified on
input. Do not use with body parameters, or, if the value of the required prop-
erty is true.
At runtime, if you do not specify a value for the parameter, the default prop-
erty value is available in the RequestContext object and passed to the API
Handler method as if the parameter was specified on the request.

First non-null

description string Documentation only. First non-null

enum Any[] Specifies a list of values that the input must match. PolicyCenter turns the
enum values in the schema into Java objects at runtime. It then compares
these values against the input values using equals and hashCode methods.
Each member of the array must be a JSON value that PolicyCenter can parse
based on the type, format, and x-gw-type values of the parameter.

First non-null

exclusiveMaximum boolean Determines if PolicyCenter treats the maximum value of this property as inclu-
sive or exclusive for purposes of comparison between two values.
The default value is false, which means that PolicyCenter treats the value as
inclusive. Only set a value for this property if you also specify a value for the
maximum property as well.

First non-null

exclusiveMinimum boolean Determines if PolicyCenter treats the minimum value of this property as inclu-
sive or exclusive for purposes of comparison between two values.
The default value is false, which means that PolicyCenter treats the value as
inclusive. Only set a value for this property if you also specify a value for the
minimum property as well.

First non-null

format string Defines the base JSON type format for the parameter. The combination of
type, format, and x-gw-type determines how PolicyCenter deserializes the
data into a Java object at runtime.
Do not specify a value for this property if this is a body parameter.

First non-null

maximum number Specifies the maximum numeric value allowed for this parameter.
PolicyCenter parses this value as a fixed-point value, with no loss of precision.
PolicyCenter then converts the value to an internal Java representation for the
purpose of comparison at runtime.
The comparison is either inclusive or exclusive of the maximum value, depend-
ing upon the value of the exclusiveMaximum property.
Example 1. If the parameter has a type value of integer and a format value
of int32, the maximum value must be a valid integer. At runtime, PolicyCenter
converts the value to an integer value.
Example 2. If the parameter has a type value of string and a format value of
gw-bigdecimal, PolicyCenter converts the value to BigDecimal at runtime.
Only set a value for this property if the parameter's runtime type is a numeric
type.

First non-null

maxItems integer Specifies the maximum number of array members, inclusive. Only set a value
for this property if the parameter is of type array. If specified, the value can-
not be a negative number.

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

96 chapter 9: Guidewire Swagger specification

Property Type Description Combination
style

maxLength integer Determines the maximum length of the parameter value, inclusive. Only set a
value for the maxLength property if the runtime type is string. If specified,
the value cannot be a negative number.

First non-null

miniItems integer Specifies the minimum number of array members, inclusive. Only set a value
for this property if the parameter is of type array. If specified, the value can-
not be a negative number.

First non-null

minimum number Specifies the minimum numeric value allowed for this parameter. PolicyCenter
parses this value as a fixed-point value, with no loss of precision. PolicyCenter
then converts the value to an internal Java representation for the purpose of
comparison at runtime.
The comparison is either inclusive or exclusive of the minimum value, depend-
ing upon the value of the exclusiveMinimum property.
This property operates in an analogous manner to the maximum property.
Only set a value for this property if the parameter's runtime type is a numeric
type.

First non-null

minLength integer Determines the minimum length of the parameter value, inclusive. Only set a
value for the minLength property if the runtime type is string. If specified,
the value cannot be a negative number.

First non-null

multipleOf number Specifies that the parameter value must be a multiple of the value of this
property. PolicyCenter parses this value as a fixed-point value, with no loss of
precision. PolicyCenter then converts the value to an internal Java representa-
tion for the purpose of comparison at runtime.
Set a value for this property only if the runtime type of the parameter is a nu-
meric type.

First non-null

pattern string Specifies a regular expression that the input must match. PolicyCenter does
not explicitly anchor the regular expression by default. If you want the regular
expression to match the entire input string, then you need to explicitly anchor
the expression with ^ and $.
PolicyCenter evaluates the pattern string using the Java regular expression
engine. Thus, the regular expression must match the Java syntax. The Java
syntax can have some minor differences from the JavaScript syntax, and,
therefore, represent a slight deviation from the Swagger specification.
Only set a value for the pattern property if the parameter has a runtime type
of string.

First non-null

reqired boolean If set to true, PolicyCenter requires this parameter on the request. If this pa-
rameter is missing from the request, PolicyCenter rejects the request with a
400 error
Set this property to true for path parameters.

First non-null

uniqueItems boolean If set to true, it indicates that each member of the array must be unique, as
defined by the equals and hashCode methods of the deserialized values.
The default value is false. Only set a value for this property if the parameter
is of type array.

First non-null

Guidewire extension properties

Property Type Description Combination
style

x-gw-export-
enumeration

boolean If set to true, PolicyCenter writes out the typekey values as an enum proper-
ty while creating the Swagger schema for external clients. A value of true is
only valid if the enum property is not set and x-gw-type is a typekey type.
The default is false

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 97

Property Type Description Combination
style

x-gw-
extensions

map<string,
AnyType>

The values in x-gw-extensions are available to the
IRestValidatorFactoryPlugin plugin if you invoke the plugin to create
custom validators for this parameter.
This value can be an arbitrary map of property keys to values. The key val-
ues can be any string, and the AnyType values can be any object, including
nested JSON objects.

Merge of
extensions

x-gw-type string Defines the base JSON type for the parameter. The combination of type,
format, and x-gw-type determines how PolicyCenter deserializes the data
into a Java object at runtime.
Do not specify this value for body parameters.

First non-null

The Swagger Path Item object
The Path Item object describes the operations available on a single path. Guidewire does not support the following
property on the Swagger Path Item object:
• $ref

Property Type Description Combination style

delete Operations object The specified operation that responds to the DELETE HTTP method. Merge

get Operations object The specified operation that responds to the GET HTTP method. Merge

head Operations object Overrides the default HEAD method implementation Merge

options Operations object Overrides the default OPTIONS method implementation Merge

parameters Parameters
object[]

PolicyCenter assumes all parameters in the array list apply to all op-
erations by default.
It is possible to override these parameter definitions for individual
operations by re-specifying a parameter with the same name and
location

Merge by logical ID,
which is $ref, if
specified, otherwise, it
is name + in.

patch Operations object The specified operation that responds to the PATCH HTTP method. Merge

post Operations object The specified operation that responds to the POST HTTP method. Merge

put Operations object The specified operation that responds to the PUT HTTP method. Merge

Guidewire extension properties

Property Type Description Combination
style

x-gw-cors-
policy

string Property specifies the CORS policy for all operations on this path, overriding any
value set for the x-gw-cors-policy property on the document root.
The string value must be the name of a CORS policy defined by the x-gw-
policies property on the root document.

First non-null

The Swagger Response object
The Response object describes a single response from an API operation. Guidewire does not support the following
properties from the Swagger 2.0 specification on the Swagger Response object:
• examples

Guidewire PolicyCenter 10.1.2 REST API Framework

98 chapter 9: Guidewire Swagger specification

Required properties

Property Type Description Combination style

description string Required if not using $ref. Documentation only. First non-null

Required properties

Property Type Description Combination style

$ref string References a response defined on the Swagger root document. It is not pos-
sible to combine this property with any other properties.
Use the following syntax for the string value:

#/responses/name

First non-null

headers map<string,
header>

The keys (string values) of the map are the names of custom HTTP headers
that it is possible to return with the response.

Merge by key

schema Response schema
object

Defines the schema to which the response body must conform, if any. First non-null

The Swagger Response Schema object
The Response Schema object defines a link to a JSON schema definition.

Required properties

Property Type Description Merge
style

items Schema
items object

Required if value of type property is array. Otherwise, do not use.
If you set the value of the type property to array, then you must also set the items
property to point to a Schema Items object that contains the actual members of the ar-
ray.

N/A

Optional properties

Property Type Description Combination
style

$ref string Provides a link to the JSON schema definition defined in the file imported as alias
using property x-gw-schema-import. For example, suppose that x-gw-schema-import
contains the following key/value pair:

contact : gw.pl.contact-1.0
Then, the $ref reference string becomes the following string:

contact#/definitions/Contact
In this string, Contact references the definition defined in the gw.pl.contact-1.0
JSON schema.
PolicyCenter then uses the referenced schema to drive the serialization and validation
of any JSON and XML types returned the API handler method.
Use the following format for the string value:

alias#/definitions/name

N/A

enum anyType[] Documentation only. The enum values must be valid values of the type defined by the
combination of type, format, and x-gw-type.

N/A

format string Use only if the type property is a scalar type. N/A

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 99

Property Type Description Combination
style

The combination of type, format, and x-gw-type determines how PolicyCenter serial-
izes scalar values returned by the API handler.

type string Specifies the type of the response body. Valid values are:
• array
• boolean
• integer
• number
• object
• string

Only set this property to object if property $ref is also set to a value. If you set this
value to Array, then you must also specify a value for the items property.
For any other allowed value, the combination of type, format, and x-gw-type deter-
mines how PolicyCenter serializes scalar values returned by the API handler method.
For example, if type=string and format=date-time, then PolicyCenter serializes a
java.util.Date object returned by the API handler method as an ISO 8601 Date.

N/A

Guidewire extension properties

Property Type Description Merge
style

x-gw-export-
enumeration

boolean If set to true, PolicyCenter writes out the typekey values as an enum property while
creating the Swagger schema for external clients. A value of true is only valid if the
enum property is not set and x-gw-type is a typekey type.
The default is false.

N/A

x-gw-type string Use only if the type property is a scalar type.
The combination of type, format, and x-gw-type determines how PolicyCenter seri-
alizes scalar values returned by the API handler.

N/A

The Swagger Schema object
The Schema object allows for the definition of input and output data types. These types can be objects, but also
primitives and arrays. Guidewire does not allow inline schema definitions. Thus, only the following properties are
valid. You must specify at least one of these properties if you use this object.

Property Type Description Combination
style

$ref string Required if type not specified. Provides a link to the JSON schema definition defined the
file imported as alias using property x-gw-schema-import. For example, suppose that
x-gw-schema-import contains the following key/value pair:

contact : gw.pl.contact-1.0
Then, the $ref reference string becomes the following:

contact#/definitions/Contact
In this string, Contact references the definition defined in the gw.pl.contact-1.0 JSON
schema.
If the operation consumes the 'application/json' media type, PolicyCenter uses this
schema to validate the incoming data.
If the API handler method takes a JsonObject object or JsonWrapper object as the body
argument, the operation requires the $ref property and PolicyCenter uses the referenced
schema to deserialize the input data.

N/A

Guidewire PolicyCenter 10.1.2 REST API Framework

100 chapter 9: Guidewire Swagger specification

Property Type Description Combination
style

The string must be one of the following formats:
alias#/definitions/name

type string Required if $ref not specified. Defines the base JSON type for the schema. The type
value must be one of the following:

• array
• boolean
• integer
• number
• string

N/A

The Swagger Schema Items object
The Schema Items object provides the array members for the items property on the Response Schema object. The
type property on the Response Schema object specifies the type of response body. If the value of the type property
on the Response Schema object is array, then the items property on the Response Schema object must point to a
Schema Items object that specifies the array members.

Optional properties

Property Type Description Combination
style

$ref string Provides a link to the JSON schema definition defined the file imported as alias using
property x-gw-schema-import. Set this property in cases in which the API returns a
top-level JSON array of data.
For example, suppose the following circumstances exist:

• The response schema has the following values set: type=array and
$ref=contact#/definitions/Contact.

• The API handler method returns an Iterable<JsonObject>
In this case, PolicyCenter serializes the Iterable object as a JSON array, in which each
array element is an object serialized and validated according to the Contact JSON
Schema.

N/A

enum anyType[] Documentation only. The enum values must be valid values of the type defined by the
combination of type, format, and x-gw-type.

N/A

format string Use only if the type property is a scalar type. The combination of type, format, and x-
gw-type determines how PolicyCenter serializes scalar values returned by the API han-
dler.

N/A

type string Do not set this property if you set a value for $ref, unless the value of $ref is object.
The combination of type, format, and x-gw-type determines how PolicyCenter serial-
izes scalar values returned by the API handler.
Valid values are:

• boolean
• integer
• number
• object
• string

N/A

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 101

Guidewire extension properties

Property Type Description Combination
style

x-gw-export-
enumeration

boolean If set to true, PolicyCenter writes out the typekey values as an enum property
while creating the Swagger schema for external clients. A value of true is only
valid if the enum property is not set and x-gw-type is a typekey type.
The default is false.

N/A

x-gw-type string Use only if the type property is a scalar type.
The combination of type, format, and x-gw-type determines how
PolicyCenter serializes scalar values returned by the API handler.

N/A

The Swagger Security Requirement object
The Security Requirement object lists the security schemes necessary to execute this operation. It is possible to
declare multiple security schemes, all of which are required. (That is, there is a logical AND between the listed
schemes.)

Property Type Description Merge style

name string The name value must match the name of a security scheme declared under the
securityDefinitions property of the Swagger root object.

N/A

The Swagger Security Scheme object
The Security Scheme object provides a means to define a security scheme for use by the various REST API
operations. Guidewire supports the following schemes:
• Basic authentication
• API key (either as a header or as a query parameter)
• OAuth2 common flows, which are implicit, password, application, and access code

Required properties

Property Type Description Combination style

type string Required. Documentation only. Value must be one of the following:
• apiKey
• basic
• oauth2

N/A

Optional properties

Property Type Description Combination style

description string Documentation only. N/A

Guidewire PolicyCenter 10.1.2 REST API Framework

102 chapter 9: Guidewire Swagger specification

Conditional properties

Property Type Description Combination
style

authorizationUrl string Required if all of the following are true:
• type is oauth2
• flow is either implicit or accessCode
Documentation only. Do not use unless all the listed conditions are
true.

N/A

flow string Required if type is oauth2. Documentation only. Use only if type is
oauth2. Otherwise, do not use. The value must be one of the
following:

• accessCode
• application
• implicit
• password

N/A

in string Required if type is apiKey. Documentation only. Use only if type is
apiKey. Otherwise, do not use. If used, the value must be one of the
following:

• header
• query

N/A

name string Required if type is apiKey. Documentation only. Use only if type is
apiKey. Otherwise, do not use.

N/A

scopes map<string1,
string2>

Required if type is oauth2. Documentation only. Use only if type is
oauth2. Otherwise, do not use.

N/A

tokenUrl string Required if all of the following are true:
• type is oauth2
• flow is either accessCode or application or password
Documentation only. Do not use unless all the listed conditions are
true.

N/A

The Swagger Tag object
The Tag object provides a means to add metadata to a single tag used by the Operation object. It is not necessary to
have a Tag object for every tag on the Operation object.

Property Type Description Combination style

name string Required. Documentation
only.

N/A

description string Documentation only. N/A

externalDocs External documentation
object

Documentation only. N/A

The Swagger X-GW-CORS-policy object
The Guidewire Swagger schema currently allows only CORS policies to use external property substitution. You can
set any of the properties in a CORS Policy object using the standard external property syntax, with properties under
the swagger namespace. For example, the following code defines a complete CORS policy whose values you can
substitute at runtime using the external properties provided by the ExternalConfigurationProviderPlugin
plugin, with the string "swagger" prepended to each of the property names.

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 103

x-gw-cors-policies:
 account:
 enabled: ${cors.account.enabled:true}
 allowOrigins: ${cors.account.allowOrigins:any}
 allowMethods: ${cors.account.allowMethods:null}
 allowHeaders: ${cors.account.allowHeaders:null}
 allowCredentials: ${cors.account.allowCredentials:true}
 exposeHeaders: ${cors.account.exposeHeaders:null}
 maxAge: ${cors.account.maxAge:1200}

Required properties

Property Type Description Combination style

allowOrigins string Specifies which property types PolicyCenter allows for CORS requests. The value
must be one of the following:

• The character *
• The string "any"
• A comma-separated list of origins or regular expressions

First non-null

The string vale of the allowOrigins property must be one of the following values.

String value Means

* The "*" string indicates the following:
• PolicyCenter allows all CORS request origins.
• PolicyCenter returns the Access-Control-Allow-Origin response header as *.
• Property allowCredentials is set to false.

any The "any" string indicates the following:
• PolicyCenter allows all CORS request origins.
• PolicyCenter sets the Access-Control-Allow-Orign response header to the value of the Origin request header.

Comma-
separated
list

A comma-separated list provides a list of explicit origin values or regular expressions. PolicyCenter allows CORS
requests for origins that match an element in the list, either exactly matching an allowed origin, or, matching a
regular expression in the list.
Use the following format for an origin string:

scheme://domain[:port]
If the element is an explicit origin, omit the optional port value (and colon) if the port is the default port for the
scheme.
PolicyCenter sets the value of the Access-Control-Allow-Origin response header to the value of the Origin re-
quest header.

Optional properties

Property Type Description Combination
style

enabled boolean If set to false, PolicyCenter disables CORS for any endpoints using this poli-
cy. The property defaults to true if you do not specify a value.

First non-null

Guidewire PolicyCenter 10.1.2 REST API Framework

104 chapter 9: Guidewire Swagger specification

Property Type Description Combination
style

allowHeaders string A comma-separated list of request headers to allow for CORS request head-
ers:

• If you do not specify a value, PolicyCenter allows all header types for
CORS requests.

• If you specify a value, PolicyCenter allows the following header types:
◦ Headers that the property explicitly specifies
◦ Standard CORS safe-listed headers
◦ Headers defined by Guidewire such as X-Correlation-ID and GW-

Language

First non-null

allowMethods string A comma-separated list of methods to allow for CORS requests:
• If you do not specify a value. PolicyCenter allows all methods.
• If you specify a value, PolicyCenter permits only the specific methods

that you identify.

First non-null

allowCredentials boolean If set to true, PolicyCenter adds the Access-Control-Allow-Credentials head-
er to the CORS responses. If you do not specify a value, the default is false.

First non-null

exposeHeaders string A comma-separated list of header names to return as the value of the
Access-Control-Expose-Header responses. If you do not specify a value (or
specify false), PolicyCenter does not add the Access-Control-Expose-Header
header to the responses.

First non-null

maxAge integer The value to return for the Access-Control-Max-Age header:
• If you do not specify a value, the default value is 600.
• If you specify -1, PolicyCenter removes the Access-Control-Max-Age

response header entirely.

First non-null

The Swagger X-GW-Serialization object
This object provides information that affects how PolicyCenter serializes the response body. See “REST API
responses” on page 14 for more information.

Property Type Description Combination
style

includeEmptyArrays boolean If set to true, PolicyCenter preserves empty arrays on serialization in
JsonObject or TransformResult objects.
If set to false, PolicyCenter treats a property as null if it contains an
empty array. (This value then works in concert with the
includeNullProperties option).
If not specified, PolicyCenter uses the default behavior for the data type.
This means that PolicyCenter treats this value as true for JsonObjects
and false for TransformResults.

N/A

includeNullItems boolean If set to true, PolicyCenter preserves items with a null value in array
properties on JsonObject or TransformResult objects and sets the cor-
responding output JSON arrays to have a null element.
If set to false, PolicyCenter ignores elements with a null value. This val-
ue works in concert with the includeEmptyArrays option. Thus, if this
value is false and an array contains only null items, PolicyCenter handles
the array as if it were empty.
The default value is false. Setting this to value to true is only valid if the
items that have null values also specify x-gw-nullable on the associated
JSON Schema.

N/A

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 105

Property Type Description Combination
style

includeNullProperties boolean If set to true, PolicyCenter preserves properties with null values on
JsonObject or TransformResult objects and sets those properties to
null in the output.
If set to false, PolicyCenter omits properties with a null value in the
output.
The default value is false. Setting this value to true is only valid if the
properties that have null values also specify x-gw-nullable on the as-
sociated JSON Schema.

N/A

Combining Swagger schema files
Guidewire provides a mechanism for creating Swagger schemas that combine together multiple pieces to form a
single, logical resulting schema document. It is possible to use this combination mechanism for a number of
different purposes. The following list describes the possible ways that you can combine Swagger schemas.

Simple
hierarchical
extension

Works by extending an application schema, which, in turn, can extend a platform schema.

Content
composition

Works by combining together several different content pieces. For example, it is possible to combing LOB-
specific schemas, along with their own extensions, and, perhaps, a base schema.

Schema
aggregation

Works by breaking a large, complex schema into multiple files for maintenance by different teams. You can
then aggregate the individual files together again for publishing as a single logical API with a single, consis-
tent base URL and version.

Minor version
change

Works by creating a new minor version of a schema that extends the previous major or minor version. This
new version can minimize schema duplication and ensure the changes are backwards-compatible

API template Works by implicitly adding the API template to the list of combined schemas for a given, published schema.

One way to think about schema combination is as a well-defined, ordered, textual merge of the documents. For
example, suppose that schema A combines schemas [B, C], listing the two schemas in that order in the x-gw-
combine property. After combination, schema A essentially looks exactly as if you did the following:
• Merged the contents of schema B on top of schema C, overwriting any properties common to both documents

with those in schema B.
• Merged the contents of schema A on top of the first result, again overwriting any properties that schema A

respecified.
The result is that schema A can override items in either schema B or schema C, and can add entirely new items, but
the merge cannot remove any items from either schema B or schema C. Schema B can also behave the same way to
schema C because of the ordering defined in x-gw-combine ([B, C]). However, ideally, any two schemas that you
want to combine in this manner are disjoint.
After the schema combination happens, PolicyCenter then validates the resulting combined schema against its
component pieces to ensure that the changes are logical extensions or otherwise backwards compatible. In this
example, PolicyCenter needs to validate schema A against schema B and against schema C. Thus, if schema A
changes the type of a parameter that was defined in Schema B, PolicyCenter reports that as an error. And, if schema
A introduced a new validation constraint on top of a parameter defined in schema B, PolicyCenter reports that as a
warning.

Schema naming

One important consequence of schema combination is that PolicyCenter does not modify the original schemas.
Schema A is a different schema, with a different name, from either schema B or schema C. The end result can also

Guidewire PolicyCenter 10.1.2 REST API Framework

106 chapter 9: Guidewire Swagger specification

have an entirely different versioning schema. For example, you can extend a schema version gw.pc.policy-10.0 as
mycompany.pc.policy-1.0.
It is also possible to extend the same schema an arbitrary number of times. For example, you can extend
gw.pc.policy-1.0 as myCompany.pc.policy-1.0, myCompany.pc.policy-2.0, and so on.
For this reason (among others), Guidewire requires that you publish your schema files explicitly in published-
apis.yaml. If you extend a base configuration schema, you mostly likely want to publish your extension only, not
the base configuration schema.
Any schema that you create based on a Guidewire schema does not automatically pick up updates to the schema
provided by Guidewire. If you want to pick up changes in a Guidewire-provided schema, you must explicitly
migrate your changes to the new Guidewire schema.

Swagger file combination ordering
Although it theoretically possible to construct any arbitrary chain of schema combination, it is important that you do
not create cycles within your schema extensions. Thus, do not do the following:
• A combines with B.
• B combines with C.
• C combines with A.

PolicyCenter combines the various schemas in the order in which each appears in the x-gw-combine property.
PolicyCenter also loads and combines all referenced schemas before processing the full schema chain.

Example

To provide a concrete example, suppose that schema A and schema A' have the following designated meanings:
• Schema A - The file as it is on disk.
• Schema A' - The logical schema after PolicyCenter combines the file with everything that it references using

property x-gw-combine.
Thus, if schema A combines [B, C] and B and C both combine with D, PolicyCenter produces A' from A using the
following sequence:
1. PolicyCenter loads B' (B combined with D) and C' (C combined with D) into memory.
2. PolicyCenter creates a list of the root objects from A, B', and C', in that order.
3. PolicyCenter follows the full document tree, starting with these root objects, according to the merge rules

defined in “Guidewire Swagger specification” on page 83.
The root objects always exist in all three schemas (A, B, C). However, it is possible that a given logical object
appears in one, two, or all three of the schemas. For each collection of matching objects, PolicyCenter always
considers A (if present), then B' (if present), and finally C' (if present), in that order. For example, suppose C' defines
a path property of "/contacts/{contactId}" with a GET operation. If C' is the only schema that defines that
operation, A inherits the definition from C' exactly as it is. If B' also defines that operation, B's definition of the
property overrides the definition in C'. If A' also defines that operation, A then overrides any properties also
specified in B' or C'.

Swagger file combination rules
The exact rules that PolicyCenter uses to combine multiple schemas depends on the specific Swagger object and
property. Thus, for a full understanding, you need to consult the documentation on each individual object and
property. As a general rule, though, the vast majority of properties and objects work as described in the following
sections.

Scalar values

A scalar value is a simple string, number or Boolean value. If there is a given set of objects defined in more than one
schema, PolicyCenter chooses the first non-null value for the scalar property that it encounters in the schema files.
For example, if A, B', and C' all define the description property on the same logical parameter, PolicyCenter uses

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 107

the value defined in A for the property in A'. However, if A specifies the parameter, but not the description
property, PolicyCenter uses the value of the description property from B'. Or, PolicyCenter uses the value from C'
if it is the only schema that specifies the value.

Leaf nodes

PolicyCenter sometimes treats the following types of objects as a leaf nodes in the document tree:
• Contact objects
• License objects
• External Documentation objects
• Security Definition objects
• Security Requirement objects
• Schema Security objects

In such cases, PolicyCenter treats the object in the same fashion as a scalar value. This means that PolicyCenter does
not try to merge the values but takes the first non-null value it finds.

Complex objects

PolicyCenter merges more complex objects (arrays, for example), across the different files.

Equivalent objects

PolicyCenter uses a fairly intuitive process to determine which objects to consider equivalent and thus to merge
together, for example:
• PolicyCenter merges operations that have identical verbs (GET or POST, for example) on identical paths.
• PolicyCenter merges parameters on operations if the parameters have the same $ref values, or, if the parameters

have the same combination of name and in values, and so on.

Validating Swagger schemas
The general philosophy in validating Swagger schema combination is that the schema that results from a
combination of files needs to be a logical, backwards-compatible extension of the combined pieces. For example, if
schema A combines with schema B, Guidewire requires the following restrictions:
• Schema A must not change the type of a parameter defined in schema B.
• Schema A must not introduce new, required parameters to operations defined in schema B.
• Schema A can remove or loosen validation constraints on input parameters defined in schema B, but schema A

must not add or tighten validation constraints
However, even with these restrictions on changes to schema A, it is possible that custom code written against
schema B does not work against schema A. The reason is that requests that are valid with respect to B are not
necessarily valid against A. However, in general, most validation errors that occur during schema combination are
warnings rather than hard errors, as there may be no way to avoid the error.

Schema verification errors

Standard schema validation occurs after schema combination happens. Thus, validation rules such as the following
all happen in the context of the combined schemas:
• Which fields are required
• Which fields can or cannot be used in combination
• Which parameter, response, or schema references are valid

As schema validation takes place after schema combination, it can sometimes make tracking down the root source of
a problem more complicated. For example, if a parameter specifies an invalid combination of type, format, and x-
gw-type properties, the error can be the result of the combination of schema A with schema B. In this case, the

Guidewire PolicyCenter 10.1.2 REST API Framework

108 chapter 9: Guidewire Swagger specification

validation error messages report the line numbers of the parameter from all files that contained that parameter
object.

Global overrides
As part of schema composition, it is possible to extend or compose the JSON schemas referenced from body
parameters and responses. To make this kind of change, use the x-gw-schema-import property to make the change
globally.
Schema references for parameters and responses are always relative to an alias. Thus, it is possible to override the
alias to point a different JSON schema. For example, suppose that the contact_base-1.0 Swagger schema defines
the contact alias as pointing to schema contact_base-1.0. The GET /contacts/{contactId} method can then
have a response schema $ref value of contact#/definitions/Contact, which then resolves to the Contact
definition within the contact_base-1.0 schema.

Example

The following sequence of steps illustrate how to create a contact_ext-1.0 Swagger schema that extends the
return schema for GET /contacts/{contactId}.
1. Create the contact_ext-1.0 JSON schema, combine contact_base-1.0, and extend the Contact schema

definition to add in the new properties.
2. Create the contact_ext-1.0 Swagger schema and combine the contact_base-1.0 schema.
3. Add the following import to the contact_ext-1.0 schema to override the contact alias to point to the

extension schema.
x-gw-schema-import
 contact : contact_ext-1.0

The result is that all references inherited from contact_base-1.0 that reference the contact alias now point to the
equivalent definitions in the contact_ext-1.0 JSON schema instead. During combination, PolicyCenter compares
the JSON schemas referenced from each body-type parameter or response schema to ensure they are appropriately
backwards compatible.

Handler composition
Composing schemas together also requires that the API handler classes be compositional as well. Use the x-gw-
apihandlers property on the root object to list the API handler classes that you want to compose together. The
property takes an array of strings, each of which is a valid Gosu or Java class name. To determine the method for
any given operation, PolicyCenter searches the listed classes, in order of listing, for the method.
It is useful to having multiple handler classes for multiple reasons.
1. You can split the implementation of a large, complex API across several logical classes.
2. If creating a Swagger schema that primarily serves to aggregate several other schema files together, you can

simply list all the handler classes associated with those component schemas.
3. If a Swagger schema is purely additive relative to the combined schemas, you can simply create a new handler

class for the new operations, and then list both that new handler class and the handler classes for the combined
schemas.

4. If you need to override only one or two methods from an existing handler class, you can:
a. Create a new class with the same method names.
b. List both your new class and the existing handler class in property x-gw-apihandlers.
c. Place the new class first in the class list so that PolicyCenter uses its methods preferentially

In addition, PolicyCenter looks preferentially for explicitly declared methods before looking at inherited methods.
This behavior makes it easier to use class inheritance to extend an existing handler class.

Guidewire PolicyCenter 10.1.2 REST API Framework

Guidewire Swagger specification 109

Guidewire PolicyCenter 10.1.2 REST API Framework

110 chapter 9: Guidewire Swagger specification

	REST API Framework
	Contents
	Guidewire Documentation
	About PolicyCenter documentation
	Support

	Guidewire REST APIs
	REST API building blocks
	Working with REST files in Guidewire Studio
	REST configuration files
	How to version configuration files
	Understanding REST configuration files that change
	Making changes to REST APIs during a rolling upgrade

	REST API requests
	HTTP operations
	HTTP status codes

	REST API responses
	Database transactions
	Reserving a database connection

	Localizing REST requests and responses
	Setting REST-related configuration parameters

	Accessing REST API information
	Working with the /apis endpoint
	Working with the /swagger.json endpoint
	Working with Swagger UI
	Known Swagger Issue - null pointer exception
	Access Swagger UI
	Access information about an API endpoint

	Exporting the API schema
	Profiling REST APIs
	Logging REST APIs

	Designing a REST API
	Working with JSON files
	Overview of the JSON schema format
	Mapping PolicyCenter objects to JSON objects
	Working with JSON objects
	JSON schema wrapper types
	Generate schema wrapper classes

	Working with Swagger files
	Overview of the Swagger schema format
	Working with schema parameters

	Implementing a REST API
	Handler class methods
	Handler method parameters
	Working with GET and POST operations
	Exception handling
	Exception handling classes
	Exception handling examples
	Package gw.api.exceptions.rest

	Publishing a REST API
	File published-apis.yaml
	File published-apis.yaml document objects
	Default API templates
	Changes to file published-apis.yaml

	Forming the API URL

	Creating a simple Activities API
	Understanding the Activity API data model
	Setting basic API functionality
	Creating the Activity JSON schema
	Creating the Activity API Swagger schema
	Publishing the Activities API
	Creating a basic handler class
	Testing your work

	Adding more API fuctionality
	Getting activities
	Getting activity detail
	Creating an activity
	Updating an activity
	Setting user permissions
	Setting user permissions for GET /activities
	Setting user permissions for POST /activities

	Adding search and sort capabilities
	Filtering activity details
	Setting validation constraints

	The IRestDispatchPlugin plugin
	Using the IRestDispatchPlugin plugin
	Default implementation class DefaultRestDispatchPlugin
	Processing REST requests
	Logging request activity

	The RequestContext object
	Working with RequestContext objects

	REST servlet processing flow
	Guidewire Swagger specification
	Swagger document objects
	The Swagger root object
	The Swagger Contact object
	The Swagger External Documentation object
	The Swagger Header object
	The Swagger Info object
	The Swagger Items object
	The Swagger License object
	The Swagger Operation object
	The Swagger Parameter object
	The Swagger Path Item object
	The Swagger Response object
	The Swagger Response Schema object
	The Swagger Schema object
	The Swagger Schema Items object
	The Swagger Security Requirement object
	The Swagger Security Scheme object
	The Swagger Tag object
	The Swagger X-GW-CORS-policy object
	The Swagger X-GW-Serialization object

	Combining Swagger schema files
	Swagger file combination ordering
	Swagger file combination rules
	Validating Swagger schemas
	Global overrides
	Handler composition

