
Guidewire InsuranceSuite ™

REST API Client Guide

Release 10.1.0

© 2021 Guidewire Software, Inc.
For information about Guidewire trademarks, visit http://guidewire.com/legal-notices.
Guidewire Proprietary & Confidential — DO NOT DISTRIBUTE

Product Name: Guidewire InsuranceSuite
Product Release: 10.1.0
Document Name: REST API Client Guide
Document Revision: 14-June-2021

http://guidewire.com/legal-notices

Contents

1 Overview . 7

2 Before you begin. 9

3 Getting started .11

4 REST API client library . 15
REST API client library configuration .15
About the Config class .15
External configuration. .16
Runtime configuration .18
REST API client library authentication .19

HttpBasic authentication. .19
HttpBearer authentication .20
ApiKey authentication .20
OAuth authentication .20
Understanding the credentialSupplier class .21

REST API client library event handlers .22
The retry event handler .22
The circuitBreaker event handler .23
The fallback event handler .25

REST API client configuration schema .25
Using REST API client library .27

Consuming a REST service .28
Using externalized configuration files .29
Using the fault tolerance features. .30
Using API security .33
Adding interceptors .35

5 REST API client plugin . 37
REST API client plugin tasks. .37
Using REST API client plugin .39

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

3

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

4

Support

For assistance, visit the Guidewire Community.
Guidewire customers

https://community.guidewire.com

Guidewire partners
https://partner.guidewire.com

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

Support 5

https://community.guidewire.com
https://partner.guidewire.com

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

6 Support

chapter 1

Overview

The InsuranceSuite REST API Client provides functionality that Guidewire InsuranceSuite applications and
integrations use to make outbound HTTP calls to OpenAPI Spec-compliant REST services. Using the client enables
loosely-coupled external code to be invoked by events that are sourced in InsuranceSuite applications.

Note: The REST API Client does not support outbound HTTP calls to InsuranceSuite applications,
such as ClaimCenter, PolicyCenter, and BillingCenter.

The Guidewire REST API client consists of two modules, a client library and a client plugin:
• The client library provides fault tolerance features that integration developers use to make synchronous REST

API calls from InsuranceSuite
• The client plugin generates REST API for making outbound HTTP requests to OpenAPI Spec-compliant REST

services

Overview 7

About the client library

The client library is distributed as a JAR file. The library works with OpenFeign annotated API and Jackson
annotated data objects. Integration developers can manually create these objects or provide existing. If their REST
service complies with the OpenAPI Spec they can use the client plugin to generate that set of classes.
The library provides the following features:
• Code generation in Java and isolation from Gosu for rapid development
• Integrates with Resilience4j to provide lightweight, easy-to-use fault tolerance library. Reseliense4j introduces

higher-order functions (decorators) to enhance any functional interface, lambda expression, or method reference
with a Circuit Breaker, and Retry. You can stack more than one decorator on any functional interface, lambda
expression or method reference.

• Integrates with OpenFeign to facilitate the creation of web service client implementations, with quality of service
features, configurable and customizable clients. Uses OpenFeign to implement timeout.

• Fault tolerance with retry, circuit breaker, and fallback
• Observability with logging and traceability
• Authentication that supports Basic, API Key, Bearer, OAuth 2.0, and Mutual TLS authentications
• Uses Apache HttpClient for robust client connections
• Uses Apache OAuth implementation for OAuth authentication
• By default uses IS standard headers in logging context
• Uses Jackson as JSON parser

About the client plugin

You use client plugin to generate an OpenFeign based REST client against a service that supports the OpenAPI
Spec. If you have an existing OpenFeign based REST API interfaces you can use the REST API library without the
client generation and take advantage of the fault tolerance features.
The client plugin provides the following features:
• Uses OpenAPI Generator to generate API client libraries, server stubs, documentation and configuration

automatically against an OpenAPI Spec-compliant REST API service endpoint.

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

8 chapter 1: Overview

https://resilience4j.readme.io/docs/getting-started
https://github.com/OpenFeign/feign
https://github.com/FasterXML/jackson
https://github.com/OpenAPITools/openapi-generator
https://github.com/OAI/OpenAPI-Specification

chapter 2

Before you begin

To start using the REST API client, install the following software:

Software URL Description

Java 8, or Java 11 as your default JDK The REST Client supports both Java 8 and
Java 11

InsuranceSuite version 2020.11 (Banff)
or later

The REST API client is available and
supported on InsuranceSuite version
2020.11 (Banff) or later

Gradle https://github.com/gradle/gradle Build automation framework. Using the
REST API client requires basic familiarity
with Gradle.

IntelliJ https://www.jetbrains.com/idea/ Guidewire recommends using InteliJ as
Interactive Development Environment
(IDE)

The REST API client is implemented using the following Open Source libraries. Use the provided links to explore
their features:

Library URL Description

OpenFeign https://github.com/OpenFeign/feign OpenFeign is a microservice invocation
framework, which is mainly used in the
consumer side, that is, invoking services.

Resilience4J https://resilience4j.readme.io/
docs

Fault tolerance library

Jackson https://github.com/FasterXML/
jackson

JSON library

Before you begin 9

https://github.com/gradle/gradle
https://camel.apache.org/components/latest/
https://github.com/OpenFeign/feign
https://resilience4j.readme.io/docs
https://resilience4j.readme.io/docs
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

10 chapter 2: Before you begin

chapter 3

Getting started

Guidewire distributes the REST API client as a ZIP file that contains a Gradle project. You can download the REST
API client rest-api-client-project-version.zip file from the Guidewire Community website. The project
contains the distribution for both, the REST API client plugin and REST API client library. The following table lists
all project folders, the project configuration files, and explains their purpose.

Project Folder Description

/build Contains the generated REST API client along with all
dependent libraries. You deploy this ZIP to the IS application.

/build-script-libs The libraries that Gradle uses

/client-libs The REST API client library client-version.jar along with a
POM file that can be used to build the project with Maven.

/compile-libs Use the libraries in this folder for testing.

/endpoint Contains the OpenApi code generator plugin. This folder
appears when you open the project in IntelliJ or run gradle
wrap.

/gradle Gradle Wrapper executable JAR and its properties file

/libs The dependent libraries that REST API client uses

build.gradle Gradle build script for configuring the current project

gradle.properties Contains the properties for the build script

gradlew Gradle Wrapper script for Unix-based systems. This file
downloads the proper version of Gradle if it is not present in
the environment. This folder appears when you open the
project in IntelliJ or run gradle wrap.

gradlew.bat Gradle Wrapper script for Windows. This file downloads the
proper version of Gradle if it is not present in the
environment. This file appears when you open the project in
IntelliJ or run gradle wrap.

README.md The project documentation

settings.gradle Gradle settings script for configuring the Gradle build. Defines
all included sub-modules. During initialization, Gradle reads
the settings.gradle file to figure out which projects to include
in a build. .

Getting started 11

https://docs.gradle.org/4.10.3/userguide/gradle_wrapper.html

The REST API client project is configured to use the PetStore https://petstore.swagger.io/ REST service to illustrate
how to generate the REST API client with this service. Initially, you use this configuration to test the generated
client in your IS application. Next, you modify the project settings to configure the OpenAPI-compliant service
endpoints and generate your own client. To start using the code generation plugin you need to unzip the distribution
zip file and open the Gradle project in your IDE. The instructions in this guide assume that you use IntelliJ.

Step1: Download the REST API client

To download the client, log in to Guidewire Community website and download the rest-api-client-project-
version.zip file.

Step 2: Unzip the zip file to your environment

1. Unzip the file to your local file system
2. Import the Gradle project to IntelliJ, or the IDE that you use

Step 2: Update the project configuration

Update the following configuration files to configure your client:
1. Open build.gradle file to update the following three parameters:

• gwRestGen_endpoint_package

Defines the generated client package name
• gwRestGen_endpoint_source

Defines the source for the endpoint. It can be a REST service endpoint OpenAPI spec URL or a local file
path to the OpenAPI spec JSON file.

• gwRestGen_isInsuranceSuite

Defines the client deployment target. When the target is an InsuranceSuite application the build task
packages the client along with the necessary libraries.
ext {
 gwRestGen_endpoint_package = "petstore"
 gwRestGen_endpoint_source = "https://petstore.swagger.io/v2/swagger.json"
 gwRestGen_isInsuranceSuite = "true"
}

2. Update settings.gradle to include the client package to the build. You can configure multiple client packages,
as shown in the following example. Respectively, you must configure the endpoint parameters for each
package in build.gradle:
include 'claimcenter:v1'
include 'policycenter:v1'

Step 3: Build the client

The project provides Gradle task that you use to build the client. For details, see “REST API client plugin tasks” on
page 37. In this project the code generation plugin generates a client against the PetStore service. Since the
endpoint source is defined as an OpenAPI spec URL, you execute the following commands:
1. Run the restDownload task to download the OpenAPI spec JSON file. To run a task with the wrapper, use one

of the following commands from a Terminal window:
• On Mac or Linux, run

./gradlew restDownload

• On Windows:
gradlew restDownload

In IntelliJ, you can also run the restDownload task from Gradle task window.
Note: If you define the gwRestGen_endpoint_source as a relative path to a JSON file, the
restDownload does not appear in the available tasks.

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

12 chapter 3: Getting started

https://petstore.swagger.io/
https://community.guidewire.com/

2. Generate the client. To run a task with the wrapper, use one of the following commands from a Terminal
window:
• On Mac or Linux, run

./gradlew build

• On Windows:
gradlew build

The build generates the client library <project>/endpoint/build/libs/gwgen.petstore-version.jar.

Step 4: Publish the generated client

To publish the client to InsuranceSuite application run the publish task. To run a task with the wrapper, use one of
the following commands from a Terminal window:
• On Mac or Linux, run

./gradlew publish

• On Windows:
gradlew publish

In IntelliJ, you can also run the publish task from Gradle task window.
The task zips up the following libraries in build/distribution/endpoints-version.zip file:
• The generated client <project>/endpoint/build/libs/gwgen.petstore-version.jar
• The REST API client library /client/libs/client-version.jar
• All libraries from /libs folder

Step 5: Deploy to InsuranceSuite application

1. Stop the InsuranceSuite application
2. Extract build/distribution/endpoints-version.zip to <IS>modules/configuration/plugins/

shared/lib folder in an InsuranceSuite application installation
3. Start the InsuranceSuite application

Step 6: Test the client in InsuranceSuite application

To test the client you create and run a test in Gosu Scratchpad in InsuranceSuite Studio. The test submits REST API
requests to the PetStore service to get the store inventory and get information about the sold and available pets.
1. Open InsuranceSuite Studio:

gwb studio

2. To open Gosu scratchpad, click Tools → Gosu Scratchpad
3. In Gosu scratchpad, type the following code:

uses gw.restclient.config.Config
uses gw.restclient.util.StaticMapper
uses gwgen.petstore.ApiClient
uses gwgen.petstore.api.StoreApi
uses gwgen.petstore.api.PetApi
uses gwgen.petstore.model.Pet
uses gwgen.petstore.model.Category
uses gwgen.petstore.model.Pet.StatusEnum

var mapper = StaticMapper.yaml()
var config = Config.builder().basePath(ApiClient.BASE_PATH).build()
var storeApi = config.buildAPI(StoreApi)
var inv = storeApi.getInventory()

inv.forEach(\ key, cnt -> print("${key} = ${cnt}"))
var petApi = config.buildAPI(PetApi)
var rtn = petApi.findPetsByStatus({ StatusEnum.AVAILABLE.toString(),

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

Getting started 13

 StatusEnum.SOLD.toString() })
print(mapper.writerWithDefaultPrettyPrinter().writeValueAsString(rtn))

4. To run the code, click Run on the scratchpad navigation bar.
5. The test completes and generate the similar to the following output. The output below displays only part of the

response:
"C:\Program Files\Java\jdk1.8.0_152\bin\java.exe"
 -javaagent:C:\ClaimCenter\studio\sdk\lib\idea_rt.jar=50833:C:\ClaimCenter\studio\sdk\bin
 -Dfile.encoding=UTF-8 -classpath C:\Users\user1\AppData\Local\Temp\classpath7313323.jar
 gw.lang.Gosu "C:\Users\user1\AppData\Local\Temp\6dace4b4\Gosu Scratchpad.gsp"
sold = 190
string = 292
pending = 182
availableTINFOILLLLLLLLLLLLLLLLLL....LLLLLLLLLLL = 1
available = 292
soldTINFOILLLLLLLLLLLLLLLLLL....LLLLLLLLLLL = 1

- id: 7777778888889957853
 category:
 name: "string"
 name: "doggie"
 photoUrls:
 - "string"
 tags:
 - name: "string"
 status: "available"
- id: 7777778888889957854
 category:
 name: "string"
 name: "doggie"
 photoUrls:
 - "string"
 tags:
 - name: "string"
 status: "available"
- id: 7777778888889957865
 category:
 name: "string"
 name: "doggie"
 photoUrls:
 - "string"
 tags:
 - name: "string"
 status: "available"
- id: 213124125
 category:
 id: 12
 name: "cats"
 name: "Garfield"
 photoUrls: []
 status: "available"
- id: 7777778888889957875
 category:
 name: "string"
 name: "doggie"
 photoUrls:
 - "string"
 tags:
 - name: "string"
 status: "available"
- id: 1234
 category:
 name: "string"
 name: "casper"
 photoUrls:
 - "string"
 tags:
 - name: "string"
 status: "available"
....
Process finished with exit code 0

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

14 chapter 3: Getting started

chapter 4

REST API client library

This section provides information to help you plan your integration project and provides technical details to
successfully configure and use the REST API library. Typically, integration developers use the library in the
following two scenarios:
• The integration has a web service client implementations using OpenFeign and only needs to use the fault

tolerance features from the library
• The integration does not have an OpenFeign client implementation and the targeted service is not OpenAPI Spec

compliant

REST API client library configuration
A configuration describes all the parameters that define a single connection. The REST API client library
configuration contains information about associated events, such as retry, circuit breaker, fallback, the settings for
timeout, traceability, and authentication. The client library Config class instance represents the merged view of the
configuration settings and provides the means to set the configuration preferences.
There are two approaches in implementing the library configuration, external and runtime. In the runtime
configuration, the configuration parameters can be provided as classes, which instances that are build at runtime. In
the external configuration the parameters are non-primitive objects that are externalized in files written in YAML or
JSON syntax. The external and runtime configurations differ in the setting of the non JSON type properties. These
properties are represented by a class name or the class name of a supplier. When configuring these properties, the
external Config object expects classes, or the class of a supplier to create the desired object or a subclass of the
desired object. The runtime Config expects an instance of the class.
The REST API client configuration properties are immutable objects and each object has a builder() static
method. To clone an object, you must call the toBuilder() method. In cases when a supplier requires an additional
information, this information is passed as a map to the class. Examples of such suppliers are a credential supplier, a
context supplier, and an interceptor supplier.

About the Config class
The Config() class has three methods to return the builders:

Method Description

builder() Returns a naked builder for Config objects.

REST API client library 15

Method Description

parseYaml(String input) Parses the YAML content and returns a Config.Builder

parseJson(String input) Parses the JSON content and returns a Config.Builder

The following example illustrates how to use the Config.builder() method:

Example

Config cfg = Config.parseYaml(STD_CONFIG)
 .basePath(baseUrl)
 .build();

Config cfg = Config.builder()
 .basePath(baseUrl)
 .build();
}

The configuration object utilizes builders to construct immutable objects. The Config class parses the external
configuration to produce a runtime Config.Builder object that allows you to modify the configuration. After
modifying the configuration, use the builder's build() method to construct the new immutable config object.

External configuration
The following table lists the external configuration objects:

Parameter Description

basePath The base path to the REST endpoint URL

auth The authentication method that the REST API client uses. The following
methods are supported:

• HttpBasic
• HttpBearer
• ApiKey
• OAuth

eventHandlers An array of eventHandlers that are applied to each request. The type
property determines the event handler type:

• retry
• circuitbreaker
• fallback

loggerName Defines a logger for an endpoint. Use this setting to define different logger
for each endpoint.

logLevel Defines custom log levels. The org.apache.log4j.Level must be at DEBUG
level to be able to set the following log levels:

• NONE
No logging

• BASIC
Logs method, URL, response status, and execution time.

• HEADERS
Logs the BASIC information and request/response headers.

Note: The AUTH headers are also logged and this is a security expo-
sure. Avoid using DEBUG level in production.

• FULL
Logs the HEADERS information, body, and metadata for request/
response.

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

16 chapter 4: REST API client library

Parameter Description
By default the logLevel is set to NONE.

timeout The timeout configuration for the request The timeout object is optional. If
it is not supplied, a default timeout object with the default settings is
provided .

• connectTimeoutMillis Defines the connection timeout in milliseconds. The default is set to 5 ms.

• readTimeoutMillis Defines the timeout for the waiting time on a read request. The timeout is
in milliseconds. The default is 5 ms.

httpClient The configuration object for an HTTP client or Mutual Transport Layer
Security (TLS) authentication. Providing this configuration is optional.

• clientSupplierClass A functional class that accepts a Map<String,String> and returns an
Apache HttpClient. This setting is ignored if ClientSupplierClass is
provided.

• hostnameVerifierSupplierClass A functional class that accepts a Map<String,String> and returns an
object that implements HostnameVerifier. This is ignored if
ClientSupplierClass is provided.

• contextSupplierClass A functional class that accepts a Map<String,String> and returns an
object that implements SSLSocketFactory.

• properties The map of name/values pairs that is passed to the ClientSupplierClass,
contextSupplierClass, and hostnameVerifierSupplierClass to get
their respective CredentialSupplier object. . The JSON presentation
looks like:

"properties":{ "key1":"value", "key2":"value"}

.

additionalInterceptors An array of additional interceptors. Interceptors provide a mechanism to
intercept and/or mutate outgoing requests or incoming responses. The
following interceptors are already added to the REST API client by declaring
the corresponding auth configuration object:

• ForwardingInterceptor
• HttpBearerAuth
• ApiKeyAuth

• interceptorSupplierClass
Required

Provides the name of the functional class for the additional supplier. The
class accepts a Map<String,String> and returns an object that
implements Feign.RequestInterceptor. Feign provides the
Feign.RequestInterceptor interface for adding/removing/mutating any
part of the request.

• properties The properties are map of name/values that are passed to the
interceptorSupplierClass class. The JSON presentation follows this
format:

"properties":{ "key1":"value", "key2":"value"}

traceActionsClass A class that implements TraceabilityActions. This is required if you use
a diagnostic context that is different than Mapped Diagnostic Context
(MDC) for holding this information. Implementing this class is also required
if you use property keys that are different than HTTP header keys that the
IS applications use.

mapperSupplierClass A supplier class that returns an object mapper

credentialSupplierSupplierClass A functional class that accepts a property map with the credentials that are
used to authenticate the HTTP requests. The class returns an object the
implements the CredentialSupplier class.

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 17

Parameter Description

• properties The credential property map that is passed to the
credentialSupplierSupplierClass class. The supplier is initialized with
these properties, and is asked for the values of the required credentials
depending on the authentication method. For example,

• HttpBasic uses username and password
• HttpBearer uses the schema or the bearToken
• ApiKey uses apikey
• OAuth uses username, password, clientId, clientSecret

Runtime configuration
At runtime, the REST library first parses the external configuration parameters and then calls the suppliers to build
their instances. The following table lists the runtime configuration parameters:

Parameter Description

basePath The base path to the REST endpoint URL

auth The authentication method that the REST API client uses. The following
methods are supported:

• HttpBasic
• HttpBearer
• ApiKey
• OAuth

eventHandlers An array of eventHandlers that are applied to each request. The type
property determines the event handler type:

• retry
• circuitbreaker
• fallback

loggerName Defines a logger for an endpoint. Use this setting to define different logger
for each endpoint.

logLevel Defines what information to log:
• NONE

No logging
• BASIC

Logs method, URL, response status, and execution time.
• HEADERS

Logs the BASIC information and request/response headers.
• FULL

Logs the HEADERS information, body, and metadata for request/
response.

By default the logLevel is set to NONE.

timeout The timeout configuration for the request

• connectTimeoutMillis
Required

Defines the connection timeout in milliseconds. The default is set to 5 ms.

• readTimeoutMillis
Required

Defines the timeout for the waiting time on a read request. The timeout is
in milliseconds. The default is 5 ms.

httpClient The configuration object for an HTTP client or Mutual Transport Layer
Security (TLS) authentication

• client An Apache HttpClient.

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

18 chapter 4: REST API client library

Parameter Description

• hostnameVerifier A functional class that accepts a Map<String,String> and returns an
object that implements HostnameVerifier. This is ignored if
ClientSupplierClass is provided.

• context A functional class that accepts a Map<String,String> and returns an
object that implements SSLSocketFactory.

interceptors An array of additional interceptors. Interceptors provide a mechanism to
intercept and/or mutate outgoing requests or incoming responses. The
following interceptors are already added to the REST API client:

• ForwardingInterceptor
• HttpBearerAuth
• ApiKeyAuth

traceActionsClass A class that implements TraceabilityActions. This is required only if you
use a diagnostic context that is different than Mapped Diagnostic Context
(MDC) for holding this information.

mapper An object mapper

credentialSupplier A functional class that accepts a key and a default value with the
credentials that are used to authenticate the HTTP requests. The class
returns an object the implements the CredentialSupplier class.

REST API client library authentication
The client library supports the following authentication methods:
• Basic authentication

This method uses the HTTP header itself to pass the encoded username and password.
• Bearer authentication

Bearer authentication (also called token authentication) is an HTTP authentication scheme that involves security
tokens called bearer tokens

• OAuth 2.0 authentication
OAuth 2.0 is an authorization protocol that gives an API client limited access to user data on a web server

• API Keys
Some APIs use API keys for authorization. An API key is a token that a client provides when making API calls.

See also

• “Using API security” on page 33

HttpBasic authentication
This is the most straightforward method and the easiest. With this method, the sender places a username:password
into the request header. The username and password are encoded with Base64, which is an encoding technique that
converts the username and password into a set of 64 characters to ensure safe transmission.

Parameter Description

username The user name. This can also be supplied by the credential supplier.

password The password. This can be provided by the credential supplier.

method The method is always HttpBasic

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 19

https://oauth.net/2/

See also

• “Using API security” on page 33

HttpBearer authentication
The HttpBearer authentication uses a bearer token to allow access to a certain resource or URL. The client must
send this token in the Authorization header when making requests to protected resources:

Authorization: Bearer <token>

Parameter Description

method The method is always bearerToken

scheme The token scheme that by default is set to bearerToken

bearerToken The token. The token could be provided by the credential supplier. The
token always uses the scheme as the credential name.

See also

• “Using API security” on page 33

ApiKey authentication
An API key is a token that a client provides when making API calls. The key can be sent in the query string:
GET /something?api_key=abcdef12345

or as a request header:
GET /something HTTP/1.1
X-API-Key: abcdef12345

or as a cookie:
GET /something HTTP/1.1
Cookie: X-API-KEY=abcdef12345

API keys are a secret that only the client and server know. Like Basic authentication, API key-based authentication
is only considered secure if used together with other security mechanisms such as HTTPS/SSL.

Parameter Description

method The method is always ApiKey

location Defines the location where the name-value pair is written. The location can
be header, query, or cookie. The default location is header.

paramName The name of the header, query param, or cookie. The default value is api.

apiKey The token. The token can also be provided by the credential supplier. The
token uses the paramName as the credential name.

See also

• “Using API security” on page 33

OAuth authentication
OAuth relies on authentication scenarios called flows, which allow the resource owner (user) to share the protected
content from the resource server without sharing their credentials. For that purpose, an OAuth 2.0 server issues
access tokens that the client applications can use to access protected resources on behalf of the resource owner. For
more information about OAuth 2.0, see oauth.net and RFC 6749.

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

20 chapter 4: REST API client library

https://oauth.net/2
https://tools.ietf.org/html/rfc6749

Parameter Description

method The method is always OAuth

flow Used to implement the work flow. Possible values are accessCode,
implicit, password, and application.

authorizationUrl The url to connect for authorization

tokenUrl The url to connect for accessToken

scopes The requested scopes

credentials The OAuth credentials:

• clientId The client id. This id can also be requested from the credential supplier

• clientSecret The client secret. Can also be requested from the credential supplier.

• username The user name. Can also be requested from the credential supplier.

• password The password .This can also be requested from the credential supplier.

Understanding the credentialSupplier class
The client library invokes the credentialSupplier class that you provide to process the individual authentication
credential. For example, this class can be used to decrypt the external string in a configuration file or it could request
the credential from an active directory.
When executing its build method, the Config.Builder calls the credentialSupplier class for each auth property.
The following example illustrates the implementation for decrypting the credentials depending on the auth property.

Example

class DecryptingCredentialSupplier implements Config.CredentialSupplier {
 @Override
 public String apply(String key, String defaultValue) {
 switch (key) {
 case "username":
 case "clientId":
 return defaultValue;
 case "password":
 case "clientSecret":
 case "BearerToken":
 default: // for ApiKeyAuth.paramName and HttpBearerAuth.scheme
 return defaultValue == null ? defaultValue : cipher.decrypt(Base64.getDecoder().decode(defaultValue));
 }
 }
 }

In the following example, the implementation obtains the credentials from Active Directory service.

Example

public class JNDICredentialSupplier implements CredentialSupplierSupplier {
 @SneakyThrows
 @Override
 public Config.CredentialSupplier apply(Map<String, String> properties) {
 Properties props = new Properties();
 if (!properties.containsKey(Context.INITIAL_CONTEXT_FACTORY) || !properties.containsKey(Context.PROVIDER_URL)) {
 throw new IllegalArgumentException("Required param missing");
 }
 props.putAll(properties);
 final Context initialContext = new InitialContext(props);
 return (key, value) -> (String) initialContext.lookup(key);
 }
}

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 21

REST API client library event handlers
The client library implements retry, fallback, circuit breaker, and timeout fault tolerance patterns.
The retry pattern enables dealing with communication errors that can be corrected by attempting them multiple
times. The fallback pattern enables your service to continue the execution in case of a failed request to another
service. The timeout pattern provides an upper bound to latency. See “External configuration” on page 16 and
“Runtime configuration” on page 18 for details. The circuit breaker addresses the problem of accidental denial of
service attacks due to retries and fast fallbacks in case of persisting communication errors.
The retry, fallback, and circuit breaker patterns are implemented using the Resilience4j library and configured
through the eventHandlers configuration parameter. The timeout is implemented using OpenFeign library as a
timeout configuration parameter.
The configuration contains information about the associated events in the retry, circuit breaker, and fallback
patterns. The eventHandlers configuration parameter is an array of eventHandlers that are applied to each
request.
For implementation examples, see:
• “Using the fault tolerance features” on page 30

The retry event handler
Operations can time out or fail because of broken connections, network glitches, unavailability of upstream services.
Client applications deal with these failures by implementing retries. The retry is a very simple pattern where failed
requests are retried a configurable number of times in case of a failure before the operation is marked as a failure.
You can provide a custom global RetryConfig. In order to create a custom global RetryConfig, you can use the
RetryConfig builder.

Parameter Default value Description

type retry The configuration property type

name GW_RETRY The name of the retry instance that is used
for logging purposes

maxAttempts 3 The maximum number of retry attempts

backoff Configures custom backoff algorithm for
handling retries of failed network calls.

• type The type is random or exponential.
• In random exponential backoff the

clients wait random interval between
consecutive retries. Typically the wait
interval is calculated using the following
formula:

wait_interval = base * multiplier^n

• With the exponential backoff the
clients wait progressively longer
intervals between consecutive retries. In
this algorithm the wait interval is
calculated using the following formula:

wait_interval = (base * 2^n) +/-
(random_interval)

• base is the initial interval, for example
wait for the first retry

• n is the number of failures that have
occurred

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

22 chapter 4: REST API client library

Parameter Default value Description

• interval 500 ms The base backoff period that is set in
milliseconds.

• multiplier 1.5 The multiplier is an arbitrary multiplier
that can be replaced with any suitable value
for backoff period. The value is in Double
format.

• randomizationFactor 0.5 The randomization factor. The value is in
Double format.

retryOnExceptionPredicateClass throwable -> true Configures a Predicate that evaluates if an
exception has to be retried. The Predicate
must return true, if the exception has to be
retried, otherwise it must return false. To
invoke retry when specified exceptions
occurred

retryOnResultPredicateClass result -> false Configures a Predicate that evaluates if a
result has to be retried. The Predicate
must return true, if the result has to be
retried, otherwise it must return false. Used
to invoke retry when the specified results
are received.

intervalFunctionClass numOfAttempts -> waitDuration A class that extends IntervalFunction.
This functional is used to modify the waiting
interval after a failure. By default the wait
duration remains constant.

See also:
• “Using the fault tolerance features” on page 30

The circuitBreaker event handler
The circuit breaker is a pattern that helps preventing cascading failures in a system. The circuit breaker pattern
allows you to build a fault-tolerant and resilient system that can survive gracefully when key services are either
unavailable or have high latency.
It is implemented as a stateful software component that switches between three states:
• closed - requests can flow freely
• open - requests are rejected without being submitted to the remote resource
• half-open - one probe request is allowed to decide whether to close the circuit again

You can provide your own custom global CircuitBreakerConfig. In order to create a custom global
CircuitBreakerConfig, you can use the CircuitBreakerConfig.builder() method. Using the builder, you can
configure the following properties.

Parameter Default value Description

type circuitBreaker The type is always circuitBreaker

automaticTransitionFromOpen
ToHalfOpenEnabled

false If set to true it means that the CircuitBreaker
automatically transitions from open to half-
open state and no call is needed to trigger
the transition. A thread is created to monitor
all the instances of CircuitBreakers to
transition them to HALF_OPEN once
waitDurationInOpenState passes. Whereas,
if set to false the transition to HALF_OPEN

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 23

Parameter Default value Description
only happens if a call is made, even after
waitDurationInOpenState is passed. The
advantage here is no thread monitors the
state of all CircuitBreakers.

failureRateThreshold 50% Configures the failure rate threshold in
percentage. When the failure rate is equal or
greater than the threshold the CircuitBreaker
transitions to open and starts short-circuiting
calls.

minimumNumberOfCalls 100 Configures the minimum number of calls
which are required (per sliding window
period) before the CircuitBreaker can
calculate the error rate or slow call rate. For
example, if minimumNumberOfCalls is 10,
then at least 10 calls must be recorded,
before the failure rate can be calculated. If
only 9 calls have been recorded the
CircuitBreaker does not transition to open
even if all 9 calls have failed.

name GW_CIRCUITBREAKER The circuitBreaker name. It is used to
create or retrieve the circuit breaker instance.

permittedNumberOfCalls
InHalfOpenState

10 Configures the number of permitted calls
when the CircuitBreaker is in HALF_OPEN
state.

slidingWindowType COUNT_BASED If the sliding window is COUNT_BASED, the
last slidingWindowSize calls are recorded
and aggregated. If the sliding window is
TIME_BASED, the calls of the last
slidingWindowSize seconds recorded and
aggregated.To determine the count type,
default is COUNT_BASED, alternative is
TIME_BASED

slowCallDurationThreshold 60000 ms Configures the duration threshold above
which calls are considered as slow and
increase the rate of slow calls.

slowCallRateThreshold 50 Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when
the call duration is greater than
slowCallDurationThreshold. When the
percentage of slow calls is equal or greater
the threshold, the CircuitBreaker
transitions to open and starts short-circuiting
calls.

writableStackTraceEnabled true Enables writing the stack trace.

waitIntervalFunctionIn
OpenStateSupplierClass

A functional supplier class. When passed a
map, it returns an object that implements
IntervalFunction.

recordExceptionSupplierClass A functional supplier class. When passed a
map, it returns an object that implements
Predicate<Throwable>.

properties The map that is passed to the above supplier.
The presentation in JSON looks like

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

24 chapter 4: REST API client library

Parameter Default value Description
"properties":{ "key1":"value",
"key2":"value"}).

See also:
• “Using the fault tolerance features” on page 30

The fallback event handler
The fallback pattern enables your service to continue the execution in case of a failed request to another service.
Instead of aborting the computation because of a missing response, you fill in a fallback value.
Typically, Fallbacks are called when Exceptions are thrown. Exceptions can occur when the HTTP request fails, or
when one of the FeignDecorators activates the CircuitBreaker.

Parameters Description

type always fallback

exceptionTypes A collection of Exception classes that the fallback uses

exceptionHandlerClass A class that handles the exception and returns an appropriate
object, external

exceptionHandler An object class that implements a Function that accepts a
Throwable and returns an appropriate response at runtime

The following example shows the configuration code for sampleRESTApi endpoint connection:

Example

Config.builder()
 .basePath(sampleRESTApiRule.baseUrl())
 .eventHandler(FallbackSetup.builder()
 .exceptionType(RetryableException.class)
 .exceptionHandler(t -> Collections.singletonList(SAMPLE_API))
 .build())
 .build()
 .buildAPI(sampleRESTApi.class)
 .findAll()

See also:
• “Using the fault tolerance features” on page 30

REST API client configuration schema
The following JSON file shows configuration schema:
{
 "type": "object",
 "id": "com.guidewire.restclient.config.ConfigEx",
 "description": "This is an external representation of the config object.\n This accepts suppliers for what the
objects that the configuration needs.\n The config object can be initialized via ConfigEx.parse()",
 "properties": {
 "additionalInterceptors": {
 "type": "array",
 "description": "This is a collection of additional interceptors, authentication, tracing are added as
interceptors.",
 "items": {
 "type": "object",
 "id": "com.guidewire.restclient.config.InterceptorSetupEx",
 "additionalProperties": false,
 "properties": {
 "interceptorSupplierClass": {

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 25

 "type": "string",
 "$ref": "java.lang.Class",
 "required": true,
 "description": "This is the supplier class, it is passed the properties to get a RequestInterceptor
implementation"
 },
 "properties": {
 "type": "object",
 "description": "This is a map of name/value that is passed to the supplier",
 "additionalProperties": {
 "type": "string"
 }
 }
 }
 }
 },
 "auth": {
 "type": "object",
 "id": "com.guidewire.restclient.config.AuthMethodEx",
 "description": "This is how to authenticate: 'HttpBasic', 'HttpBearer', 'ApiKey', or 'OAuth' are supported,
each has specific attributes based on their 'method' property.",
 "oneOf": [{
 "$ref": "com.guidewire.restclient.config.ApiKeyAuthEx"
 }, {
 "$ref": "com.guidewire.restclient.config.HttpBasicAuthEx"
 }, {
 "$ref": "com.guidewire.restclient.config.HttpBearerAuthEx"
 }, {
 "$ref": "com.guidewire.restclient.config.OAuthEx"
 }]
 },
 "basePath": {
 "type": "string",
 "description": "This is the base path to the endpoint."
 },
 "credentialSupplierSupplierClass": {
 "type": "string",
 "$ref": "java.lang.Class",
 "description": "this is a class that implements Credential supplier. The supplier can be initialized the with
properties below, and is asked for the value of the various credentials, i.e., ApiKeyAuth is used the if paramName is
defaulted it is 'apikey', so the supplier is asked for 'apikey' value. HttpBasicAuth uses username and password.
HttpBearerAuth uses the schema or default to 'bearToken. OAuth uses username, password, clientId, clientSecret."
 },
 "eventHandlers": {
 "type": "array",
 "description": "This is the event handlers that should be applied to each request, RetrySetupEx,
FallbackSetupEx, CircuitBreakerEx.",
 "items": {
 "type": "object",
 "id": "com.guidewire.restclient.config.EventHandlerSetupEx",
 "oneOf": [{
 "$ref": "com.guidewire.restclient.config.CircuitBreakerSetupEx"
 }, {
 "$ref": "com.guidewire.restclient.config.FallbackSetupEx"
 }, {
 "$ref": "com.guidewire.restclient.config.RetrySetupEx"
 }]
 }
 },
 "httpClient": {
 "type": "object",
 "id": "com.guidewire.restclient.config.HttpClientSetupEx",
 "description": "This is setup information for ssl or tls.",
 "additionalProperties": false,
 "properties": {
 "clientSupplierClass": {
 "type": "string",
 "$ref": "java.lang.Class",
 "description": "this is a function class that accepts a Map<String,String> and returns an HttpClient object.
Note that if this is declared then the other suppliers are ignored."
 },
 "contextSupplierClass": {
 "type": "string",
 "$ref": "java.lang.Class",
 "required": true,
 "description": "this is a function class that accepts a Map<String,String> and returns an object that
implements SSLSocketFactory"
 },
 "hostnameVerifierSupplierClass": {

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

26 chapter 4: REST API client library

 "type": "string",
 "$ref": "java.lang.Class",
 "required": true,
 "description": "this is a function class that accepts a Map<String,String> and returns an object that
implements HostnameVerifier"
 },
 "properties": {
 "type": "object",
 "description": "this is a map of name/values which is passed to the httpClientSupplier, contextSupplier, and
hostnameVerifierSupplier to get their respective object. to get a CredentialSupplier.",
 "additionalProperties": {
 "type": "string"
 }
 }
 }
 },
 "logLevel": {
 "type": "string",
 "description": "This what to log, default is NONE:, NONE: No logging; BASIC: method, URL, response status, and
execution time; HEADERS: the BASIC information and request/response headers; FULL: the HEADERS information, body, and
metadata for request/response",
 "enum": ["NONE", "BASIC", "HEADERS", "FULL"]
 },
 "loggerName": {
 "type": "string",
 "description": "This to override the logger for this end point; you may want to log different end points to
different loggers. Note that the logger must be at DEBUG to enable the additional logLevel messages"
 },
 "mapperSupplierClass": {
 "type": "string",
 "$ref": "java.lang.Class",
 "description": "This is an ObjectMapper, but default the standard mapper is used."
 },
 "properties": {
 "type": "object",
 "description": "this is a map of name/values which is passed to the CredentialSupplierSupplier to get a
CredentialSupplier.",
 "additionalProperties": {
 "type": "string"
 }
 },
 "timeout": {
 "type": "object",
 "id": "com.guidewire.restclient.config.TimeoutSetupEx",
 "description": "This is timeout information.",
 "additionalProperties": false,
 "properties": {
 "connectTimeoutMillis": {
 "type": "integer",
 "required": true
 },
 "readTimeoutMillis": {
 "type": "integer",
 "required": true
 }
 }
 },
 "traceActionsClass": {
 "type": "string",
 "$ref": "java.lang.Class",
 "description": "This is whether to deal with trace headers, but default the standards headers are forwarded."
 }
 }

Using REST API client library
To start using the REST API Client, follow the steps in the “Getting started” on page 11 guide. Use the information
in this section to learn how to use the following library features:
• “Consuming a REST service” on page 28
• “Using externalized configuration files” on page 29
• “Using the fault tolerance features” on page 30
• “Using API security” on page 33

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 27

• “Adding interceptors” on page 35

Consuming a REST service
The REST API library follows the functional programming paradigm along with the Decorator pattern to construct
a set of features around REST calls. The examples in this section use the StoreApi from PetStore https://
petstore.swagger.io/ REST service to illustrate how you can use the REST API client library with your own
OpenAPI Spec compliant service.

How to make a REST call with a default set of fault tolerance parameters

In the following example, the configuration builder builds the configuration using the default settings.

Example

Map<String, Integer> response = Config.builder().build()
 .buildAPI(StoreApi.class)
 .getInventory();

How to make a REST call with custom fault tolerance parameters

In the following example, the maxAttempt method overwrites the default retry attempts (3) and sets it to 5.

Example

Map<String, Integer> response = Config.builder()
 .eventHandler(RetrySetup.builder()
 .maxAttempt(5)
 .build())
 .build()
 .buildAPI(StoreApi.class)
 .getInventory();

How to externalize the Rest API client configuration

You can provide the parameters in external files in JSON or YAML format. To retrieve the parameters use the
Config object and one of the parseJson(String cfgString) and parseYaml(String cfgString). For more information, see
“Using externalized configuration files” on page 29.

Example

Config config = Config.parseYaml(configString).build();
Map<String, Integer> response = config.buildAPI(StoreApi.class)
 .getInventory();

How to order the fault tolerance decorators

The order of the fault tolerance decorators is important. In the following example, the fallback is wrapped within a
retry because the fallback is defined first. Even though maxAttempt is 5, only one retry attempt is made because the
fallback event handler always successfully returns an empty map for any Throwable exception.

Example

Config config = Config.builder()
 .eventHandler(FallbackSetup.builder()
 .exceptionType(Throwable.class)
 .exceptionHandler(throwable -> Collections.emptyMap())
 .build())
 .eventHandler(RetrySetup.builder()
 .maxAttempt(5)
 .build())
 .build();
 Map<String, Integer> response = config.buildAPI(StoreApi.class).getInventory();

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

28 chapter 4: REST API client library

https://petstore.swagger.io/
https://petstore.swagger.io/

Using externalized configuration files
Instead of programmatically setting up the configuration values, you can store them in external files. Use the
parseYaml() or parseJson() methods to decrypt the externally configured values or fetch them from a more
secure location.
The following example illustrates the usage of the CredentialSupplier map that the builder accepts during the
build to get the individual credentials from the selected provider. These values remain set in this configuration
object, and the secrets are kept encrypted.

Example

Config config = Config.parseYaml(configString)
 .credentialSupplier(directoryCredSupplier)
 .build()

Defining the configuration parameters in a YAML file

The following example shows an external YAML file that stores the parameters of the OAuth authentication object.
The credentialSupplierSupplierClass property provides the name of a custom supplier class
example.restclient.PBECipherSupplier:

Example

basePath: "http://localhost:49947"
auth:
 method: "OAuth"
 flow: "password"
 tokenUrl: "http://localhost:49947/api/v1/token"
 scopes: "openid"
 credentials:
 clientId: "0oarlaum9pzLAAzFK0h7"
 username: "username"
 password: "6jp4DQ5+2AnasaX10aWykg=="
credentialSupplierSupplierClass: "example.restclient.PBECipherSupplier"
properties:
 salt: "0oarlaum9pzLAAzFK0h7"
eventHandlers:
- type: "retry"
 name: "IO"
 maxAttempts: 4
 backoff:
 type: "random"
 retryOnExceptionPredicateClass: "example.restclient.faulttolerance.IOExceptionRetryPredicate"
- type: "retry"
 name: "Auth"
 maxAttempts: 1
 retryOnExceptionPredicateClass: "example.restclient.faulttolerance.AuthExceptionRetryPredicate"
 intervalFunctionClass: "example.restclient.faulttolerance.ImmediateInterval"
- type: "retry"
 name: "Default"
 backoff:
 type: "exponential"
 retryOnExceptionPredicateClass: "example.restclient.faulttolerance.DefaultRetryPredicate"
- type: "fallback"
 exceptionTypes:
 - "java.io.IOException"
 - "feign.FeignException"
 exceptionHandlerClass: "example.restclient.faulttolerance.SuspendFallback"
- type: "circuitBeaker"

Implementing the credential supplier class

The following example shows the implementation of example.restclient.PBECipherSupplier class:

Example

package example.restclient;

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 29

import gw.restclient.config.Config;
import gw.restclient.config.CredentialSupplierSupplier;
import gw.restclient.util.PBECipher;

import java.nio.charset.StandardCharsets;
import java.util.Base64;
import java.util.Map;

public class PBECipherSupplier implements CredentialSupplierSupplier {
public static final String PASS_PHRASE = "some string of characters used as a passPhrase";
public static final String SALT = "salt";

@Override
 public Config.CredentialSupplier apply(Map<String, String> properties) {
 String passPhrase = System.getProperty("restClient.PBE.passPhrase", PASS_PHRASE);
 PBECipher cipher = new PBECipher(passPhrase,
 properties.get(SALT).getBytes(StandardCharsets.ISO_8859_1));
 return (key, value) -> {
 if (value == null) {
 return null;
 }
 switch(key) {
 case "username":
 case "clientId":
 return value;
 case "password":
 case "clientSecret":
 case "BearerToken":
 default: // for ApiKeyAuth.paramName and HttpBearerAuth.scheme
 return cipher.decrypt(Base64.getDecoder().decode(value));
 }
 };
 }
}

Using the fault tolerance features
The REST client includes a set of fault tolerance features that can be applied to a REST call.

How to use the retry
This is used to retry executing a piece of code multiple times if a particular type of exception is thrown. Configure
the retry properties using the following settings:
Table 4.8-1 Configurations

Setup property Default value Description

maxAttempts 3 The maximum number of attempts
before failing

exponentialBackoff None An exponential backoff function to
modify the waiting interval after each
failure; If not specified, the
intervalFunction is used.

intervalFunction Always returns 500ms A function to modify the waiting interval
after a failure

retryOnResultPredicate Always false for any result value A predicate determining if a result has to
be retried; It must return true, if the
result has to be retried, otherwise it
must return false.

retryOnExceptionPredicate Always true for any Throwable A predicate determining if an exception
has to be retried; It must return true, if
the exception has to be retried,
otherwise it must return false.

The following example shows how to create the configuration:

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

30 chapter 4: REST API client library

Example

Config config = Config.builder()
 .eventHandler(RetrySetup.builder()
 .retryOnResultPredicate(Objects::nonNull)
 .retryOnExceptionPredicate(e -> e instanceof IOException)
 .maxAttempts(7)
 .build();

To specify multiple retry attempts, wrap the retry within another retry, as shown in the following example. This
results in executing the throw statement 10 times:

Example

Config config = Config.builder()
 .eventHandler(RetrySetup.builder().maxAttempts(5).build())
 .eventHandler(RetrySetup.builder().maxAttempts(2).build());
 .build();

How to use CircuitBreaker

You invoke circuit breaker when API calls failed or appeared to be slow. The circuit breaker starts short-circuiting
API calls when a failure rate or slow call rate threshold is reached. A circuit breaker instance is used by multiple
REST calls to determine the state of the circuit breaker. An instance is uniquely identifiable by its name within a
JVM.
Table 4.8-2 States

State Description

CLOSED The starting state for circuit breaker, failure rate or slow call
rate threshold is calculated.

OPEN Circuit breaker transition to this state once the failure rate or
the slow call rate threshold is reached. No API calls are
executed. Transition to HALF-OPEN state once wait interval
has elapsed.

HALF-OPEN Permits a configurable number of calls to see if the backend is
still unavailable or has become available again. Once wait
interval has elapsed, it transitions to CLOSED state when
failure rate or slow call rate is below threshold. Otherwise, it
transitions to OPEN state.

Table 4.8-3 Configuration

Setup property Default value Description

failureRateThreshold 50 Configures the failure rate threshold in
percentage.

slowCallRateThreshold 100 Configures the slow call rate threshold in
percentage.

slowCallDurationThreshold 60,000 ms Configures the duration threshold above
which calls are considered as slow and
increase the rate of slow calls.

permittedNumberOfCallsInHalfOpenSt
ate

10 Configures the number of permitted
calls when the CircuitBreaker is half
open.

slidingWindowType COUNT_BASED Configures the type of the sliding
window which is used to record the

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 31

Setup property Default value Description
outcome of calls when the
CircuitBreaker is closed.

slidingWindowSize 100 Configures the size of the sliding window
which is used to record the outcome of
calls.

minimumNumberOfCalls 100 Configures the minimum number of calls
which are required (per sliding window
period) before the CircuitBreaker can
calculate the error rate or slow call rate.

automaticTransitionFromOpenToHalfO
penEnabled

false If set to true it means that the
CircuitBreaker automatically transitions
from open to half-open state and no call
is needed to trigger the transition.

waitIntervalFunctionInOpenState Always returns 500ms A function to modify the waiting interval
in open state (when circuit breaker
short-circuiting the calls).

writableStackTraceEnabled true Enables writable stack traces. Set to false
to reduce log spam when the circuit
breaker is open as the cause of the
exceptions is already known.

recordException Always false for any exceptions A predicate determining if an exception
has to be recorded; It must return true,
if the exception has to be recorded,
otherwise it must return false.

Define circuit breaker with default name and configurations

Example

Config config = Config.builder()
 .eventHandler(CircuitBreakerSetup.builder().build()); // default name is GW_CIRCUITBREAKER
 .build();

Define circuit breaker with custom name and configurations

Example

Config config = Config.builder()
 .eventHandler(CircuitBreakerSetup.builder()
 .name("customeCircuitBreakerName")
 .failureRateThreshold(50)
 .slowCallRateThreshold(100)
 .slowCallDurationThreshold(Duration.ofMillis(60000))
 .permittedNumberOfCallsInHalfOpenState(10)
 .slidingWindowType(CircuitBreakerSetup.SlidingWindowType.COUNT_BASED)
 .slidingWindowSize(100)
 .minimumNumberOfCalls(100)
 .waitIntervalFunctionInOpenState(x -> 500L)
 .automaticTransitionFromOpenToHalfOpenEnabled(false)
 .recordException(e -> e instanceof IOException)
 .writableStackTraceEnabled(true)
 .build())
 .build();

How to use fallback

The following example demonstrates how to use fallback to recover from an exception by returning a specific value:

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

32 chapter 4: REST API client library

Example

Config config = Config.builder()
 .eventHandler(FallbackSetup.builder()
 .exceptionType(IOException.class)
 .exceptionHandler(e -> "fallback") // This results in returning the String "fallback".
 .build();

How to use timeout

The following example demonstrates how to set a timeout for a specified piece of code to execute:

Example

Config config = Config.builder()
 .timeout(TimeoutSetup.builder()
 .connectTimeoutMillis(1000)
 .readTimeoutMillis(500)
 .build())
.build();

Using API security
The REST client includes several API authentication methods that can be easily configured for your API calls. The
supported authentication methods are Basic, Bearer, ApiKey, and OAuth 2.0.

How to configure Basic authentication

Example

Config config = Config.builder()
 .auth(HttpBasicAuth.builder()
 .username("user")
 .password("password")
 .build())
 .build();

How to configure Bearer authentication

Example

Config config = Config.builder()
 .auth(HttpBearerAuth.builder()
 .bearerToken("tokenValue")
 .scheme("Bearer")
 .build())
 .build();

How to configure ApiKey authentication

API keys are supplied by client users and applications calling REST APIs to track and control how the APIs are
used. For example, to meter access and prevent abuse or malicious attack. API keys include a key ID that identifies
the client responsible for the API service request. This key ID is not a secret, and must be included in each request.
API keys can also include a confidential secret key used for authentication, that only the client and the API service
know.

Example

Config config = Config.builder()
 .auth(ApiKeyAuth.builder()
 .apiKey("key")
 .location(ApiKeyAuth.Location.header)
 .paramName("ApiKey")

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 33

 .build())
 .build();

How to configure OAuth 2.0 authentication

Configuring the OAuth 2.0 client credentials flow
The OAuth 2.0 client credentials grant flow permits a web service (confidential client) to use its own credentials,
instead of impersonating a user, to authenticate when calling another web service. In this scenario, the client is
typically a middle-tier web service, a daemon service, or a web site. The client credentials flow is the simplest
OAuth 2 grant, with a server-to-server exchange of your application's clientId, clientSecret for an OAuth application
access token.

Example

Config config = Config.builder()
 .auth(OAuth.builder()
 .tokenUrl("tokenUrl")
 .redirectUrl("redirectUrl")
 .scopes("scope1 scope2")
 .flow(OAuth.OAuthFlow.application)
 .tokenStore(new OAuthTokenStore.Default())
 .credentials(OAuthCredentials.builder()
 .clientId("clientId")
 .clientSecret("clientSecret")
 .build())
 .build())
 .build();

Configuring the OAuth 2.0 password grant
The password grant type is a way to exchange a user's credentials for an access token. The password grant involves
only one step: the application presents a traditional username and password login to collect the user’s credentials and
makes a POST request to the server to exchange the password for an access token.

Example

Config config = Config.builder()
 .auth(OAuth.builder()
 .tokenUrl("tokenUrl")
 .redirectUrl("redirectUrl")
 .scopes("openid")
 .flow(OAuth.OAuthFlow.password)
 .tokenStore(new OAuthTokenStore.Default())
 .credentials(OAuthCredentials.builder()
 .clientId("clientId")
 .username("username")
 .password("password")
 .build())
 .build())
 .build();

How to configure Mutual TLS

With mutual authentication, a connection can occur only when the client trusts the server's digital certificate and the
server trusts the client's certificate. The exchange of certificates is carried out by means of the Transport Layer
Security (TLS) protocol. The REST client supports two-way authentication which can be configured by using the
config object

Example

Config config = Config.builder()
 .basePath(basePath)
 .ssl(SSLSetup.builder()
 .socketFactory()
 .hostnameVerifier()
 .build())
.build();

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

34 chapter 4: REST API client library

Adding interceptors
This example applies to IS internal services that use Zipkin. This interceptor forwards tracing values from MDC to
headers if they have not been set previously:

Example

Config config = Config.builder()
 .requestInterceptor(new ForwardingInterceptor(Action implementation))
 .build();

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client library 35

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

36 chapter 4: REST API client library

chapter 5

REST API client plugin

The client plugin generates REST API for making outbound HTTP requests to external REST services. To use the
plugin, users import the plugin into their projects. Developers use IntelliJ or other development environments that
are integrated with Gradle. The plugin provides access to code generation tasks that the developers use within their
Gradle build scripts. Guidewire recommends using IntelliJ, because IntelliJ with its Gradle integration recognizes
the tasks and makes using them easier.

REST API client plugin tasks
The client plugin provides Gradle Codegen plugin tasks that you use to generate REST API:

Using gwUrlDownload

Downloads the OpenAPI for a given RESTful service endpoint and saves it as a local JSON file. This local file can
be used as a source by the gwRestCodegen task. The gwUrlDownload task accepts the following parameters:
Table 5.1-1 Parameters

Params Description

sourceUrl The REST service endpoint OpenAPI Spec URL

target The file path to save the OpenAPI Spec content

Example

gradle gwUrlDownload -DsourceUrl="https://petstore3.swagger.io/api/v3/openapi.json" -Dtarget="petshop.json"

Using gwConfigCodegen

Generates a configuration file that can be updated by the developers to customize the REST client code generation.
The file is stored in the project root folder.
Table 5.1-2 Parameters

Params Description

packageName The name of the Java package that the generated code has to
be associated with

REST API client plugin 37

Params Description

projectName The name of the Gradle subproject and folder that the
generated client has to be placed in

Example

gradle gwConfigCodegen -DpackageName="com.example" -DprojectName="petshop"

Using gwRestCodegen

Generates a REST HTTP client project, Java source code, tests and support files.
Table 5.1-3 Parameters

Params Description

packageName The REST client Java package name to use

source The source can be defined as one of the following:
• a REST service endpoint OpenAPI spec URL
• a local file path to the OpenAPI spec JSON file

target The output folder where the generated client has to be saved

configFile (optional) The file path to the YAML OpenAPI Codegen configuration
settings file

isInsuranceSuite (optional) A flag indicating that the task runs within an InsuranceSuite
project

Common usage:

Example

gradle gwRestCodegen -Dtarget="~/petshop" -Dsource="https://petstore3.swagger.io/api/v3/openapi.json"

Generation that uses a configuration file

Use the gwConfigCodegen task to generate the configuration file:

Example

gradle gwRestCodegen -Dtarget="~/petshop" -Dsource="https://petstore3.swagger.io/api/v3/openapi.json" -
DconfigFile="petshop/codegen.config.yaml"

Using subproject auto-generated tasks

Tasks Description

restDownload For URL-based endpoint sources, this all-in-one task
downloads the REST API definition for that endpoint,
generates client code and compiles a JAR library. This task is
not present if the endpoint source is file-based.

restConfig This task auto-generates codegen.config.yaml file with
default settings inside your endpoint sub-project folder. See
“Using gwConfigCodegen” on page 37 for more information. If
a configuration of the code generation is necessary, then first
generate the configuration file and then the code.

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

38 chapter 5: REST API client plugin

Tasks Description

restCodegen This task generates code that is based on the given endpoint
definition and configuration settings. See “Using
gwRestCodegen” on page 38 task. This task automatically
compiles and generates a JAR library for the endpoint in the
build directory of the subproject.

Using REST API client plugin
The following topics provide examples of how to generate REST API code using the client plugin tasks.

How to generate code using URL-based source with default configuration

Run the code generation task:
gradle restDownload

How to generate code using URL-based source with customized configuration

1. Generate a configuration file
gradle restConfig

2. Update the configuration codegen.config.yaml file
3. Run the code generation task

gradle restDownload

How to generate code using file-based source with default configuration

Run the code generation task:
gradle restCodegen

How to generate code using file-based source with customized configuration

1. Generate a configuration file
gradle restConfig

2. Update the configuration codegen.config.yaml file
3. Run the code generation task

gradle restCodegen

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

REST API client plugin 39

Guidewire InsuranceSuite 10.1.0 REST API Client Guide

40 chapter 5: REST API client plugin

	REST API Client Guide
	Contents
	Overview
	Before you begin
	Getting started
	REST API client library
	REST API client library configuration
	About the Config class
	External configuration
	Runtime configuration
	REST API client library authentication
	HttpBasic authentication
	HttpBearer authentication
	ApiKey authentication
	OAuth authentication
	Understanding the credentialSupplier class

	REST API client library event handlers
	The retry event handler
	The circuitBreaker event handler
	The fallback event handler

	REST API client configuration schema
	Using REST API client library
	Consuming a REST service
	Using externalized configuration files
	Using the fault tolerance features
	Using API security
	Adding interceptors

	REST API client plugin
	REST API client plugin tasks
	Using REST API client plugin

