77

Guidewire PolicyCenter

Globalization Guide

[GUIDEWIRE

Adapt and succeed™

© 2021 Guidewire Software, Inc.
For information about Guidewire trademarks, visit http://guidewire.com/legal-notices.
Guidewire Proprietary & Confidential — DO NOT DISTRIBUTE

Product Name: Guidewire PolicyCenter
Product Release: 10.1.2

Document Name: Globalization Guide
Document Revision: 14-June-2021

http://guidewire.com/legal-notices

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Contents

Guidewire Documentation. e 8
About PolicyCenter documentationttt 8
SUPPOIt . o 10

1 Understanding globalization i it 1"

Dimensions of globalization. 11
Shortcomings of the two traditional globalization dimensions. 12
Globalization dimensions in Guidewire applications, 12

Selecting language and regional formats in PolicyCenter. 14

Configuration files used for globalization 15

Configuration parameters for general globalization features. 17

2 Workingwithlanguages. ittt it at s 19

About language fallback L 20

Enabling display [anguages 21
General language enablement considerations 21
Setting the primary language and default locale. 21
Setting the default currency 22
Enable a display language 22
View supported language files in Studio. L 22

Setting the primary display language. 23

Selecting a personal language preference. 23

Upgrading display languages e 24

3 Localized printingttt i ittt it 25

Printing with non-standard fonts. 25

Localized printing in a Windows environmentttt 26
Register the fonts with Apache FOP e 26
Register FOP configuration and font family with PolicyCenter 27
Testing your configurationttt 27

Localized printing in a Linux environmentttt 28
Download and install the required fonts 28
Configure the font 28
Register the font with Apache FOP i 29
Register FOP configuration and font family with PolicyCenter 30
Test your configurationt 30

4 Localizing PolicyCenter stringresources.ooiitii it nnnnnnneess 31

OVerview Of StrNG TESOUICES vttt e e et et et e e e e e e e e e et e 31
Display keys and localization 31
Typecodes and localization. 32
Workflow step names and localization 32

Exporting and importing String reSOUICES o v ittt et e e e et e e e et 32
Exporting localized string resources with the command-prompttool 33
Importing localized string resources with the command-prompttool 33
Localizing string resources by exporting and importing files. 34

Localizing display Keys. 35
PolicyCenter and the master list of display keys 35

Localize display keys by using the Display Key editor. 36

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Identifying missing display Keys 36
Working with display keys for later translation 37
Localizing typecodes 37
Localize typecodes in a typelist properties file, 37

Setting a localized sort order for localized typecodes, 38

Set the sort order for typecodes ina typelist. 38

Sort order, typecode order, and typekey priority 38

Sort prefectures in alphabetic order. L 38

Example of state typelist sort fileelements 39
Accessing localized typekeys from GOsU e 39
Localizing product model String reSOUrces.ottt 39
Translating product model strings in Product Designer. 40
Localizing coverage term Optionsottt e et e 40

5 Localizing PCFfieldsttt eaaannns 41
Setting the default width for input field labels 41
Localizing hints for date and time fields 41

6 Working with a localized Guidewire Studio. o, 43
Specifying a language for Studio L 44
Specify a language for Studio in the Settings dialog. 44
Viewing Unicode characters in Studio. 44
Elements of Studio that support viewing Unicode 44

Set Studio to view Unicode characters 44
Localized GOSU €ITOT MESSAZES . .« « o ¢ ¢ v vttt ettt e e e e et e e e e e e 45
Localizing rule set names and descriptionsttt 45
Setting a language for ablock of Gosucode. 45
Specifying an ILocale object for a language type. 46
Methods on gw.api.util.LocaleUtil. 47

7 Localizing administrativedata............... o i i 49
Specifying localized columns in €ntities 49
Localization attributesottt 49
Localization tables in the database 50
System table localization. 51
Product Designer System Table editor 51
Localizable tables in PolicyCenter.t e 51
Localizing system table XML files i 52

8 Localizingworkflow e 53
Set the workflow language or region. 53
Localizing workflow Step Namesottt 54
Translate workflow stepnames in Studio 54

Export workflow step names as string resources for translation. 55
Creating a language-specific workflow subflow 55
Methods that create a language-specificsubflow. 55

Create a child subflow 56
Localize Gosu code in a Workflow step e 56

9 Localizingtemplates. i e i e e 59
Creating localized documents, emails, andnotes 60
Create language-specific folders e 60

Copy template content files. 61
Localizing template descriptor files e 61
Localizing document descriptor files. 62

Localizing email and note descriptor files 63

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Localize template files 63
Localizing documents, emails, and notes in PolicyCenter. 64

Create a localized document 64

Create a localized email. 64

Create alocalized note 64
Document localization SUPPOTt. oo e 65

10 Working with regional formats. i i i i it e e e e 67
Configuring regional formats. 67
Overview of the International Components for Unicode (ICU) library 67

Locale codes, localization_localeCode.xml, and the ICU library 68
Javalocale codes and the ICU library e e e 68

Add a locale code to the LocaleType typelist e 68
Configuring a localization localeCode.xmlfile. 69
<GWLocale> XML element of a localization file. 69
<DateFormat> and <TimeFormat> elements of a localization file. 71

11 Setting the default application locale for regionalformats 73
12 Setting regional formats for a block of Gosucode. it 75
13 Configuring name information. i i e 77
Names in PolicyCenter 77
Read-only and editable name information. 77

NamMe OWNETS o e 78

Modal name PCF files 78
Configuring name data and fields foraregion 78
Configuring the Localization XML file fornames. 78
PCFMode attribute of the NameFormatelement. 79

Text format mode attribute of the NameFormatelement 79

Visible fields attribute of the NameFormat element. 79

Setting up additional region and name configurations, 80

Add aname format foraregion 80

Extend the Contact entity withanew name column 80

Modal PCF files and name configuration.t 82
NAmME OWINETS. . . . o o e 83
NameFormatter class 83
NameOwnerFieldld class. 85

14 Working with Kanjifields i i i i i i e e e e eaaaanns 87
Enabling indexes for Kanjifields 87
Enable Kanji indexes in PolicyCenter 87

Enable Kanji indexes in ContactManager. oottt et e 88

15 Working with the Japanese Imperial Calendar 89
Configuring Japanese dates 89

Set the Japanese Imperial Calendar as the default foraregion 90

Set fields to display the Japanese Imperial Calendar 90

Set keyboard shortcut for Imperial Era 92

16 Configuring geographicdata. i i i ittt et enann 95
Configuring address formats by country it 95
Setting the default application COUNtIyttt e e 96
Configuring jurisdiction information.t 97
Configuring state information 97
State typelist abbreviation methods 97

StateAbbreviation typelist abbreviationmethod. 98

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Zone configurationt e e e 98
Overview of configuring Zones it 98
Location of zone configuration files. 99
Zone configuration files 99

<SZOoNes™ CleMENt e 100
<Zone>element. 100
<ZoneCode>element 102
<Links>element 102
<AddressZoneValue>element 103
Importing address zone data 103

Basic ZONe tyPeS ot 104
ZoneType typelist.o 104

Add anew ZOonE tyPe. oottt 104

17 Configuring address information. i i i i i e, 105

Overview of global addresses. 106
Overview of Country XML files e 106
Overview of modal address PCF files 106

Addresses and the AddressFormatter class. 106

Addresses and states or Jurisdictions 108

Address configuration files 108

Configuring address data and field order foracountry 108
Configuring the Country XML file e 108

Visible fields attribute of the country XML file 109
PCFMode attribute of the country XML file 0., 109
Postal code display key attribute of the country XML file 109
State display key attribute of the country XML file. 110
Additional country and address configurations 110

Address modes in page configuration 111

AdAress OWNETS oottt ettt e e 111

AddressOwnerFieldld class 112

Address autocompletion and autofill. 112
Configuring autofill and autocompletion in address-config.xml. 113
Configuring autofill and autocompletioninaPCFfile 115

Add address autocomplete.o 115
Address automatic completion and autofillplugin. 116

Example: Add a country withanew address field. 116

Basic configuration of the suburb field. 116
Add a suburb field to the GlobalAddress entity, 117
Make changes so suburb fielduses autofill 117
Add a New Zealand locale type and suburb zone type. 118
Add New Zealand localization configuration files 119
Add a New Zealand folder under the geodatafolder 119
Add a New Zealand field validator file 121
Add typecodes for currency and jurisdiction 121
Configure the Currency XML file for New Zealand currency., 122
Edit supporting user interface files and add New Zealand suburb field 122
Add a New Zealand suburb field to the user interface 123
Restart Studio and modify ContactManager.ttt 124

Additional information for configuring New Zealand localization 125

18 Configuring and localizing phone information. o oo, 127

Configuring area codes and phone number validation 127
Working with PhoneNumberMetadata.xml. 128
Change default phone localization. 128

Phone number datamodel e 129

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Phone number PCF widget 129
PhoneFields interface. 130
PhoneOwner interface e 130
Phone numbersineditmode. 130
Phone numbers inread-only mode. 131

Configure the phone extension read-only label. L. 131

Converting phone numbers from previous formats i 132

19 Linguisticsearchand sort it 133

Effect of character data storage type on searchingandsorting 134

Searching and sorting in configured languages. e 134

Configuring search in the PolicyCenter database 135
Searching and the Oracle database. e 135

Configuring Oracle search in language languageCode.xml............................ 135
Configuring Oracle search in collations.xml 136
General search rules 137
Searching and the SQL Serverdatabase i 138

Configuring sort in the PolicyCenter database i, 138
Configuring database sort in language languageCode.xml 138
Configuring database sort in collations.xml it 139
Determining the order of typekeys. 140

20 Configuring national field validation. i 141

Localizing field validators for national field validation 142

Gosu field validation. e 142

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Guidewire Documentation

About PolicyCenter documentation

The following table lists the documents in PolicyCenter documentation:

Document Purpose

InsuranceSuite Guide If you are new to Guidewire InsuranceSuite applications, read the InsuranceSuite Guide for
information on the architecture of Guidewire InsuranceSuite and application integrations. The
intended readers are everyone who works with Guidewire applications.

Application Guide If you are new to PolicyCenter or want to understand a feature, read the Application Guide. This guide
describes features from a business perspective and provides links to other books as needed. The
intended readers are everyone who works with PolicyCenter.

Upgrade Guide Describes the overall upgrade process, and describes how to upgrade your configuration and
database. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations.

Configuration Upgrade Tools Describes the tools and functionality provided by the Guidewire InsuranceSuite Configuration

Guide Upgrade Tools. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations. Visit the Guidewire Community to
access the Configuration Upgrade Tools Guide, which is available for download, separately from the
main documentation set, with the Configuration Upgrade Tools.

Installation Guide Describes how to install PolicyCenter. The intended readers are everyone who installs the application
for development or for production.

System Administration Guide Describes how to manage a PolicyCenter system. The intended readers are system administrators
responsible for managing security, backups, logging, importing user data, or application monitoring.

Configuration Guide The primary reference for configuring initial implementation, data model extensions, and user
interface (PCF) files for PolicyCenter. The intended readers are all IT staff and configuration engineers.

PCF Format Reference Describes PolicyCenter PCF widgets and attributes. The intended readers are configuration engineers.
See the Configuration Guide

Data Dictionary Describes the PolicyCenter data model, including configuration extensions. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Security Dictionary Describes all security permissions, roles, and the relationships among them. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Globalization Guide Describes how to configure PolicyCenter for a global environment. Covers globalization topics such as
global regions, languages, date and number formats, names, currencies, addresses, and phone
numbers. The intended readers are configuration engineers who localize PolicyCenter.

Rules Guide Describes business rule methodology and the rule sets in Guidewire Studio for PolicyCenter. The
intended readers are business analysts who define business processes, as well as programmers who
write business rules in Gosu.

Guidewire Contact Management Describes how to configure Guidewire InsuranceSuite applications to integrate with ContactManager
Guide and how to manage client and vendor contacts in a single system of record. The intended readers are
PolicyCenter implementation engineers and ContactManager administrators.

Best Practices Guide A reference of recommended design patterns for data model extensions, user interface, business
rules, and Gosu programming. The intended readers are configuration engineers.

Integration Guide Describes the integration architecture, concepts, and procedures for integrating PolicyCenter with
external systems and extending application behavior with custom programming code. The intended

[GUIDEWIRE

Guidewire PolicyCenter 10.1.2 Globalization Guide

Document Purpose
readers are system architects and the integration programmers who write web services code or
plugin code in Gosu or Java.

REST API Client Guide Describes how to use the InsuranceSuite REST API Client to make outbound HTTP calls to internal or

third-party REST services.

Java API Reference

Javadoc-style reference of PolicyCenter Java plugin interfaces, entity fields, and other utility classes.
The intended readers are system architects and integration programmers.

Gosu Reference Guide

Describes the Gosu programming language. The intended readers are anyone who uses the Gosu
language, including for rules and PCF configuration.

Gosu API Reference

Javadoc-style reference of PolicyCenter Gosu classes and properties. The reference can be generated
at any time to reflect the current PolicyCenter configuration. The intended readers are configuration
engineers, system architects, and integration programmers.

ISBTF and GUnit Testing Guide

Describes the tools and functionality provided by InsuranceSuite for testing application behavior
during an initial implementation or an upgrade. The guide covers functionality related to Behavior
Testing Framework, GUnit, and Gosu functionality designed specifically for application testing. There
are two sets of intended readers: business analysts who will assist in writing tests that describe the
desired application behavior; and technical developers who will write implementation code that
executes the tests.

Glossary

Defines industry terminology and technical terms in Guidewire documentation. The intended readers
are everyone who works with Guidewire applications.

Advanced Product Designer
Guide

Advanced Product Designer is a tool that helps you, a business user, design, simulate, and deploy an
insurance product. The intended readers are business analysts who understand insurance products,
business systems analysts who liaise between business analysts and IT, project managers, and IT who
provides technical expertise in areas such as programming, testing, and databases.

Product Model Guide

Describes the PolicyCenter product model. The intended readers are business analysts and
implementation engineers who use PolicyCenter or Product Designer. To customize the product
model, see the Product Designer Guide.

Product Designer Guide

Describes how to use Product Designer to configure lines of business. The intended readers are
business analysts and implementation engineers who customize the product model and design new
lines of business.

REST APl Framework

Describes the Guidewire InsuranceSuite framework that provides the means to define, implement,
and publish REST API contracts. It also describes how the Guidewire REST framework interacts with
JSON and Swagger objects. The intended readers are system architects and integration programmers
who write web services code or plugin code in Gosu or Java.

Conventions in this document

Text style Meaning Examples
italic Indicates a term that is being defined, A destination sends messages to an external system.
added emphasis, and book titles. In Navigate to the PolicyCenter installation directory by running the
monospace text, italics indicate a variable to following command:
be replaced.
cd installDir
bold Highlights important sections of code in for (i=0, i<someArray.length(), i++) {
examples. newArray[i] = someArray[i].getName()
}
narrow bold The name of a user interface element, such Click Submit.

as a button name, a menu item name, or a

tab name.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Text style Meaning Examples
monospace Code examples, computer output, class and The getName method of the IDoStuff APl returns the name of the
method names, URLs, parameter names, object.

string literals, and other objects that might
appear in programming code.

monospace italic Variable placeholder text within code Run the startServer server_name command.
examples, command examples, file paths, Navigate to http://server_name/index.html.
and URLs.

Support

For assistance, visit the Guidewire Community.
Guidewire customers

https://community.guidewire.com
Guidewire partners

https://partner.guidewire.com

https://community.guidewire.com
https://partner.guidewire.com

chapter 1

Understanding globalization

Globalization in PolicyCenter is the set of features and configuration procedures that make PolicyCenter suitable for
operation in a global environment.

Dimensions of globalization

Traditionally, software solves the problem of operation in a global environment along two dimensions that intersect:
Language

Writing system and words to use for text in the user interface.
Country/region

Formatting of dates, times, numbers, and monetary values that users enter and retrieve.

The intersection of these two dimensions, language with country/region, is known as locale.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

ﬁimensions of Globalization in Traditional Applicatioh

Language

o

Country/Region

o /

Traditionally, applications let you select from a preconfigured set of locales. Java embodies this globalization
dichotomy in Java locale codes. A Java locale code combines an ISO 639-1 two-letter language code with an ISO
3166-1 two-letter country/region code.

For example, the Java locale code for U.S. English is en-US. A locale defines the language of text in the user
interface as used in a specific country or region of the world. In addition, the locale defines the formats for dates,
times, numbers, and monetary amounts as used in that same country or region.

Shortcomings of the two traditional globalization dimensions

In traditional applications, language and country/region and their intersection as locale do not cover the following
issues for software that operates in a global environment:

* Linguistic searching and sorting
* Phone number formats
* Address formats

Furthermore, traditional applications enable users to select only predefined locales. For example, users typically
cannot select French as the language, and, at the same time, select formats for dates, times, numbers, and monetary
amounts used by convention in Great Britain.

Globalization dimensions in Guidewire applications

Guidewire applications overcome the shortcomings of the traditional model by providing three dimensions for
operating in a global environment. These three dimensions are independent:

Language
Writing system and words to use for text in the user interface, as well as for linguistic searching and sorting
behavior.

E GUIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Regional formats

Formatting of dates, times, numbers, and monetary amounts that users enter and retrieve. Regional formats
specify the visual layout of data that has no inherent association with specific countries, but for which formats
vary by regional convention.

National formats

Formatting of addresses and phone numbers. National formats specify the visual layout of data for which the
country or region is inherent, and the format remains the same regardless of local convention.

Currency formats
Currency is independent of language, locale, and national formats. A specific currency is a property of a specific

PolicyCenter transaction. The values set for locale and regional formats determine how to format the currency
amount. However, visual formatting has no impact on the actual currency used in the transaction.

For example, a speaker of Canadian French can be operating in an en-CA locale looking to insure property in
Florida in USD rather Canadian dollars.

. !

In Guidewire applications, you can select the language to see in PolicyCenter independently of the regional formats
in which you enter and retrieve dates, times, numbers, and monetary amounts.

However, phone numbers and addresses in PolicyCenter use national (country) formatting, set through application
configuration. For example, if you enter the Japan country code +81 in a phone field, PolicyCenter displays the
phone number by using Japanese formatting. If you enter France for the country in an address field, PolicyCenter
shows address fields specific for France, including a CEDEX field.

Understanding globalization 13

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Selecting language and regional formats in PolicyCenter

In Guidewire PolicyCenter, each user can set the following:
» The language that PolicyCenter uses to display labels and drop-down menu choices.

* The regional formats that PolicyCenter uses to enter and display dates, times, numbers, monetary amounts, and
names.

You set your personal preferences for display language and for regional formats by using the Options menu € at the
top, right-hand side of the PolicyCenter screen. On that menu, click International, and then select one of the
following:

¢ Language
* Regional Formats

To take advantage of international settings in the application, you must configure PolicyCenter with more than one
region or language.

* PolicyCenter hides the Language submenu if only one language is enabled.
* PolicyCenter hides the Regional Formats submenu if only one region is configured.

* PolicyCenter hides the International menu option entirely if a single language is enabled and PolicyCenter is
configured for a single region.

PolicyCenter indicates the current selections for Language and Regional Formats by putting a check mark to the left
of each selected option.

Options for setting the display language

In the base configuration, Guidewire configures PolicyCenter to use a single display language, which is United
States English. To view another language, you must enable at least one additional language and configure
PolicyCenter for that language.

If your installation has more than one configured language, you can select among the available choices using the
PolicyCenter Language submenu. The LanguageType typelist defines the set of language choices that the menu
displays.

If you do not select a display language from the Language submenu and your user administrator has not set your
language, PolicyCenter uses the language specified by your web browser. Configuration parameter
DefaultApplicationLanguage specifies the primary language for PolicyCenter screens, but it does not specify the
default browser language. In the base configuration, Guidewire sets the primary language to U.S. English.

Options for setting regional formats
If your installation contains more than one configured region, you can select a regional format for that locale from
the Regional Formats submenu. At the time you configure a region, you define regional formats for it.
Regional formats specify the visual layout of the following kinds of data:
* Date
* Time
* Number
* Monetary amounts
* Names of people and companies

The LocaleType typelist defines the names of regional formats that users can select on the Regional Formats menu.
The base configuration defines the following locale types:

e Australia (English) e Germany (German)
e Canada (English) e Great Britain (English)
e Canada (French) ¢ Japan (Japanese)

France (French) United States (English)

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

The default regional format for a user is set in the profile of that user on the Administration tab.

Unless you select a regional format from the Regional Formats menu, PolicyCenter uses the regional formats of the
default region. The configuration parameter DefaultApplicationLocale specifies the default region. In the base
configuration, the default region is en_uUS, United States (English). If you select your preference for region from the
Regional Formats menu, you can later use the default region again only by selecting it from the Regional Formats
menu.

Configuration files used for globalization

You use Guidewire Studio™ to edit the configuration files for globalization. The following list describes the
configuration files and how to navigate to them in the Project window.

configuration—config
config.xml

Configuration parameters related to localization. The localization-related configuration parameters include,
among others:

* DefaultApplicationLocale
* DefaultApplicationLanguage
* DefaultCountryCode
* DefaultPhoneCountryCode
Each Guidewire application instance contains a single copy of config.xml.
configuration— config— Extensions— Typelist
Country.ttx, Country.default.ttx
Country codes that reflect the Unicode Common Locale Data Repository (CLDR) country names.
Currency.example.ttx
Contains examples of currency code and similar information for the supported currencies.
Jurisdiction.ttx, Jurisdiction.example.ttx

Used by a number of PCF files to display a list of states or provinces, as well as jurisdictions that are not
states or provinces.

LanguageType.ttx
List of languages that you want to have enabled in PolicyCenter.

IMPORTANT During development, if you make a change that requires that a language typecode in
this typelist not be in effect when you restart, you must retire the language typecode. Do not delete
the language typecode, or you might have database errors when you restart the application.

PhoneCountryCode.ttx
Phone country codes.
State.ttx
Address configuration.
StateAbbreviation.ttx, StateAbbreviation.example.ttx
Defines abbreviations of the names of states,provinces, territories, and so on by country.
configuration— config— Localizations
collations.xml
Collation configuration for one or more languages that apply to one or more database types.
localization_LlocaleCode.xml

(Example: localization_en_US.xml) Currency formatting information for use with single currency
rendering mode only. Defines other region settings like date and time formats and numeric separators. Studio
supports multiple localization files.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

language LanguageCode .xml

(Example: language_de_DE.xml) Contains collation definitions, input field label width, and date-time field
hints for a specific language.

configuration— config— Localizations—Resource Bundle 'display’
display_LlanguageCode.properties

Application display keys for a specific language. Each region must have a separate
display LlanguageCode.properties file. A display LanguageCode.properties file defines standard
Java properties by using the following format:

display_key name = value
display.properties

Application display keys for the fallback language. In the base configuration, this file contains display keys
for U.S. English.

configuration— config— Localizations— Resource Bundle 'typelist'
typelist_LanguageCode.properties
(Example: typelist_de.properties) Application typecode names and descriptions for a specific language.
typelist.properties

Fallback language for typelist properties. In the base configuration, this file contains U.S. English typelist
properties.

configuration—config— Localizations— Resource Bundle 'gosu.display’
gosu.display LlanguageCode.properties

(Example: gosu.display_de.properties) Contains Gosu error messages. Studio displays these messages if
it encounters a Gosu error condition. You can translate these error messages into the languages of your
choice.

gosu.display.properties
Fallback language for Gosu properties. In the base configuration, this file contains U.S. English values for
Gosu properties.

configuration—config— Localizations—Resource Bundle 'productmodel.display’
productmodel.display_LlanguageCode.properties

(Example: productmodel.display_de.properties) Display keys for the fields used in the PolicyCenter
product model. Except for U.S. English, the text strings in this file are in the language specified by
LocaleCode.

productmodel.display.properties

Fallback language for product model display properties. In the base configuration, this file contains U.S.
English values for product model display keys.

configuration— config—Metadata— Typelist
LocaleType.tti
List of defined regions.LocaleType.tti
PhoneCountryCode.tti
List of country code values for phones.
configuration—config—currencies currencyCodeFolder
currency.xml
Regional format overrides for monetary amounts in installations with multiple currencies.
configuration—config—datatypes
*.dti
Data-type declarations for column types in the data model.
configuration—config—fieldvalidators

datatypes.xml

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Default values for precision and scale values in the default currency.
fieldvalidators.xml

Format information for fields such as currencies, phone numbers, and ID fields, and other fields that need
validation and input masks. Does not apply to date-time fields.

configuration— config—fieldvalidators countryCodeFolder
fieldvalidators.xml
Field validation definition overrides by country.
configuration—config—geodata
countryCode-locations.txt
Mapping between postal codes and cities for a country.
configuration—config—geodata countryCodeFolder
address-config.xml
Address configuration by country.
country.xml
Visible address fields and display keys for the state and postal code labels.
zone-config.xml

Zone information for a specific region. Zones are address components used for address autofill and region
creation.

configuration—config—phone
nanpa.properties

Area codes as defined by the North American Numbering Plan Administration (NANPA). These area codes
apply to North American countries other than the United States.

PhoneNumberMetaData.xml

Area codes and validation rules for international phone numbers. See the comments at the beginning of the
file for more information.

PhoneNumberAlternateFormats.xml

Additional area codes and validation rules for international phone numbers. See the comments at the
beginning of the file for more information.

Configuration parameters for general globalization features

The following parameters in config.xml relate to the general globalization features of PolicyCenter. For more
information about these parameters, see the Configuration Guide.

Parameter name Description

AlwaysShowPhonelWidgetRegionCode Whether the phone number widget in PolicyCenter displays a selector for phone re-
gion codes.

DefaultApplicationCurrency Currency to use by default for new monetary amounts or whenever the use does

not specify a currency for an amount.

DefaultApplicationLanguage Primary language for field labels and other string resources that PolicyCenter shows
to users who do not select a personal language preference. The language must be
enabled, and the specified language displays only for display keys that are defined
for that language. Undefined display keys in the primary language cause the appli-
cation to use language fallback.

DefaultApplicationLocale Region for regional formats in the application, unless the user selects a different
personal preference for regional formats.

Guidewire PolicyCenter 10.1.2 Globalization Guide

[GUIDEWIRE

Parameter name

Description

DefaultCountryCode

Country code to use for new addresses by default or if a user does not specify a
country code for an address explicitly.

DefaultNANPACountryCode

Default country code for region 1 phone numbers. NANPA stands for North Ameri-
can Numbering Plan Administration.

DefaultPhoneCountryCode

Server-wide country code to use for new phone numbers by default or if a user
does not specify the country code during phone number entry.

DefaultRoundingMode

Default rounding mode for monetary amount calculations. Guidewire recommends
limiting this setting to HALF_UP or HALF_EVEN.

MulticurrencyDisplayMode

When set to MULTIPLE, PolicyCenter displays a currency selector for monetary
amounts.

In single currency installations, setting SINGLE, there is no need for a currency se-
lector because all amounts are in the default currency.

chapter 2

Working with languages

PolicyCenter enables you to configure support for multiple display languages. Display languages specify the writing
system and words to use for text in the user interface, as well as linguistic searching and sorting behavior. Typically,
you configure PolicyCenter for display languages by enabling languages supplied by Guidewire.

Working with display languages

In the base configuration, the primary display language in PolicyCenter is United States English, for which string
resources are defined in display.properties and typelist.properties.

To display languages other than U.S. English, you must do the following:

Enable additional display languages

When you configure PolicyCenter to use a language provided by Guidewire, PolicyCenter configures localized
screen and field labels and other string resources for that language.

Select the primary display language for the application

Set one of the enabled languages as the primary display language for PolicyCenter in the
DefaultApplicationLanguage configuration parameter. The primary display language is the default preferred
language for users. New users are assigned the primary display language as their default preferred language.
They see user interface labels, window names, and so on in the primary language at the time that they log in. A
user can select any language that has been enabled in PolicyCenter as their preferred display language.

Note: Guidewire PolicyCenter uses language fallback to display string resources, such as display keys
and typecode keys, that are not defined for the user's preferred display language.

Important:

PolicyCenter enables you to configure display languages of your choice manually. However, Guidewire does not
provide language configuration support for configuring PolicyCenter with a language that Guidewire does not
provide.

If you manually configure your own language and have questions, contact your Guidewire Professional Services
representative.

See also

* “About language fallback” on page 20
» “Enabling display languages™ on page 21
» “Setting the primary display language” on page 23

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

About language fallback

Guidewire PolicyCenter uses a language fallback hierarchy for display languages. The fallback mechanism:
* Orders the set of language property files into a strict hierarchy.
 Uses language and locale codes in the property file names to indicate the fallback hierarchy.

In general, you enable a language and set it as the primary display language, and, if necessary, add a display key
property file and a typelist property file for that language. When you run the application, language fallback occurs
for display keys and typecode keys that are missing.

Thus, language fallback means that if a display key or typelist key is not available in the user's preferred language,
PolicyCenter uses the keys defined in the next property file in the hierarchy, if there is one. For example,
display_fr_CA.properties falls back to display_fr.properties, which, in turn, falls back to the base language
defined in display.properties.

Language fallback always applies to the user's preferred language. For example, if, in addition to Canadian French,
you enable Spanish for PolicyCenter, a user can change the preferred language from Canadian French to Spanish.
For that user, if a display key is missing for Spanish, the language falls back to the language defined in
display.properties, which, in the default configuration, is U.S. English.

Note: Setting the primary display language in configuration parameter
DefaultApplicationLanguage does not cause that language to become a fallback for any other
language. Setting the primary display language affects only the default preferred language for users. A
user always has a preferred language. The default for that preferred language is the language defined
as the primary display language.

Example fallback for French localization

In the base configuration, Guidewire provides standard French display key and typelist property files:

* display_fr.properties

e typelist_fr.properties
However, suppose that you want Canadian French to be the language that users see when they log into PolicyCenter.
To accomplish this task, you need to perform the following work flow.

1. Define the French Canadian display keys that differ from standard French in file
display_fr_CA.properties, located in the following Studio directory:

configuration— config— Localizations—Resource Bundle 'display’

2. Define the French Canadian typecode keys that differ from standard French in file
typelist_fr_CA.properties, located in the following Studio directory:

configuration— config— Localizations—Resource Bundle 'typelist'

3. Enable a French Canadian language option by adding the following entry to file LanguageType.ttx, located
in the following Studio directory:

configuration— config— Extensions—typelist

<typecode code="fr_CA" desc="Frang¢ais Canadien" name="Frang¢ais Canadien"/>
4. Set configuration parameter DefaultApplicationLanguage to fr_CA in file config.xml.
5. Restart the application server to enable these changes in Guidewire PolicyCenter.

Thereafter, whenever a user logs into PolicyCenter, the user sees Canadian French as the default language, unless
the user, at some point, changes the preferred display language to a different enabled language in PolicyCenter.

For a user who is using Canadian French, if PolicyCenter cannot find a Canadian French display key for an element
in the user interface, the display language falls back first to the definition for French in display_fr.properties. If
this file cannot provide a value for the display key, the display language falls back to the definition in
display.properties. The same happens for typecode keys.

Synchronizing language property files

In the base configuration of PolicyCenter, Guidewire provides U.S. English as the default language defined in files
display.properties and typelist.properties. However, if you do not intend to use U.S. English as an

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

available language in PolicyCenter, it is not necessary to maintain these files in synchronization with additional
language display keys and typecodes that you add to other language files. You are free to do so, but Guidewire does
not require it.

Enabling display languages

To use a display language other than U.S. English, open Guidewire Studio™ for PolicyCenter and configure the
LanguageType typelist to use a supported language. Then start the server.

On server startup, the PolicyCenter configures localized screen and field labels and other string resources for that
language. After the server starts, the language is available.

See also

 “Setting the primary display language” on page 23
» “Selecting a personal language preference” on page 23

» “Upgrading display languages” on page 24

General language enablement considerations

If you enable other languages in addition to the base configuration default (U.S. English), it is possible to make one
of these additional languages the primary language for your Guidewire application. To set the primary language, set
configuration parameter DefaultApplicationLanguage in file config.xml.

How PolicyCenter decides which language to present to the user
1. Initially, you configure PolicyCenter to support one or more languages, as defined in the LanguageType
typelist.

2. You then set one of the defined languages as the default application language by setting configuration
parameter DefaultApplicationLanguage to your preferred value.

3. At runtime, the browser in which the application runs sends a list of one or more preferred languages in the
HTTP request's Accept-Language header. It is possible to configure the browser with the set of preferred
languages.

4. PolicyCenter then attempts to show the user interface in the user's preferred language, as defined in the
Accept-Language header.

5. If PolicyCenter does not support any of the languages passed in the Accept-Language header, PolicyCenter
then attempts to show the user interface in the language defined as the default application language
(DefaultApplicationLanguage).

The DefaultApplicationlLanguage language is also the one you configure for data that does not use display keys
or typecode keys. You manually configure this data in only one language, the primary language.

Setting the primary language and default locale

If you enable a display language, you might also want to set the DefaultApplicationLanguage and
DefaultApplicationLocale configuration parameters in config.xml to that of your target language and region.

Note: If you do not make this change, certain items in the application user interface will remain in the
primary language and default locale, which in the base configuration is U.S. English.

You can set these two configuration parameters only to a supported language and region, as follows:
* You can set DefaultApplicationLanguage to an enabled language.

* You can set DefaultApplicationLocale either to a locale that PolicyCenter supports in the base configuration
or to the locale of an installed region pack.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

IMPORTANT To be able to set the value of DefaultApplicationLanguage or
DefaultApplicationLocale and have it affect an application, you must set these values and then
start the server for the first time.

See also

» “Setting the primary display language” on page 23

Setting the default currency

You can change the default currency from USD to your local currency by setting DefaultApplicationCurrency in
file config.xml.

You must set DefaultApplicationCurrency and perform additional configuration on the product model.

IMPORTANT To apply a new value of DefaultApplicationCurrency, you must drop the database
before you restart the server.

See also

* For additional information on configuring currencies, see the Configuration Guide

Enable a display language

About this task

All display languages that are provided by Guidewire are available in Guidewire Studio™. To enable a language,
use Studio to indicate that a language is to be used in the product, and then restart the product.

Procedure

1. Stop the PolicyCenter application server.

2. Start Guidewire Studio for PolicyCenter.

3. In the Studio Preject window, navigate to the following location in the Settings dialog.
File—Settings— Guidewire Studio

4. Sect the Show filename suffix on new extension dialog check box.

5. In the Studio Preject window, navigate to the following location:
configuration— config— Extensions— Typelist

6. Selecting Typelist, use the right-click contextual menu to create a new LanguageType typelist extension,
entering the correct language/locale code for the language that you want to enable in GenericCenter in the
Filename Suffix entry field at the bottom of the dialog, fr_FR, for example.

7. In the new typelist extension, add the corresponding typecode, along with the name and description of the
language.

8. Start the application server.

After the server starts, the language that you enabled is now a choice from the Options (gear icon) menu, for
example:

Options—International—Language— French (FR)

View supported language files in Studio

All translated languages provided by Guidewire are available in Guidewire Studio™.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Procedure

1. Start Guidewire Studio.

2. To see the display language files, navigate in the Project window to
configuration— config— Localizations—Resource Bundle 'display'.

The default U.S. English file is display.properties.

3. Navigate back up to Localizations to see additional resource bundles and the collations, language, and
localization files. For example:

* collations.xml

* Resource bundle ‘display’

* Resource bundle ‘gosu.display’

* language_de_DE.xml

* language_ja.xml

* language_ja_JP.xml

* localization_en_US.xml

* localization_fr_FR.xml

* localization_ja_JP.xml

* Resource bundle ‘productmodel.display’

* Resource bundle ‘typelist’

Setting the primary display language

The DefaultApplicationLanguage configuration parameter in config.xml sets the primary display language, the
default preferred language for users. New users are assigned the primary display language as their default preferred
language. They see user interface labels, window names, and so on in the primary language at the time that they log
in. A user can select any language that has been enabled in PolicyCenter as their preferred display language.

You must enable the language that you want to use for DefaultApplicationLanguage. Set the value of this
configuration parameter before you start your PolicyCenter server for the first time.

IMPORTANT You can enable additional display languages later, but you cannot change the primary
application language after starting the server, even if you restart it.

The value that you set for DefaultApplicationLanguage must be a typecode in the LanguageType typelist. If you
set the value of the parameter DefaultApplicationLanguage to a value that is not a LanguageType typecode, the
application server cannot start.

See also

» “Enable a display language ” on page 22
* “About language fallback” on page 20
* Configuration Guide

Selecting a personal language preference

Users of PolicyCenter can choose a preferred display language from the Options (gear icon) menu by navigating to
International—Languages. Language choices are available only for enabled languages. A user’s language preference
overrides the primary application language that you set system-wide with the parameter
DefaultApplicationLanguage in config.xml. A user’s choice for preferred display language persists between
logging out and logging in again.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

See also

o “Setting the primary display language” on page 23
» “Selecting language and regional formats in PolicyCenter” on page 14

Upgrading display languages

See the Guidewire Upgrade Guide for a description of the process involved in upgrading display languages between
different PolicyCenter versions. The Upgrade Guide is available for download with the Guidewire InsuranceSuite
Upgrade Tools.

chapter 3

Localized printing

Generating PDF documents in languages other than U.S. English typically requires additional configuration of your
system and of Guidewire PolicyCenter.

Printing specialized character sets and fonts

PDF document generation in a specialized character set for languages other than U.S. English typically requires
additional configuration. Adobe Portable Document Format (PDF) provides a set of fonts that are always available
to all PDF viewers. This set of fonts includes the Courier, Helvetica, and Times font families and several symbolic
type fonts. In some cases, you might need to use specialized font families to handle languages such as Japanese.

Guidewire does not provide fonts for use with Guidewire products. Any fonts that you use must be provided by a
vendor for your operating system platform. It is the operating system vendor that defines how you can use a specific
font and under what circumstances. If you have questions about the acceptable use of a specific font, contact the
operating system vendor that provided the font.

In particular:

* You must ensure that appropriate fonts are available for document printing and other features of the Guidewire
applications.

* Document fonts must be provided and supported by the operating system vendor.

* Guidewire does not guarantee any of the fonts supplied as part of an operating system platform.

Printing with non-standard fonts

It is possible to print PDF documents from PolicyCenter that use non-standard fonts. However, to do so, your
operating system must support the required font. Keep in mind that it is also possible for different versions of an
operating system to change support for various fonts. For example:

* Microsoft Windows 7 supports Japanese font msmincho.ttc and the font exists in the default Windows 7
configuration.

* Microsoft Windows 10 no longer supports the msmincho.ttc font and other non-English fonts in the basic
configuration. However, Windows 10 users can add additional fonts as an optional feature.

Microsoft provides instructions on how to install missing fonts after an upgrade to Windows 10 in the following web
site:

https://docs.microsoft.com/en-us/windows/deployment/windows-10-missing-fonts

Also keep in mind that the Japanese-language version of the Windows 10 operating system can contain various fonts
by default that are not available in the standard English-language version of the Windows operating system.

https://docs.microsoft.com/en-us/windows/deployment/windows-10-missing-fonts

Guidewire PolicyCenter 10.1.2 Globalization Guide

[GUIDEWIRE

Localized printing in a Windows environment

Printing PDF documents that require a character set not supported by PDF requires additional setup. For example,
the Russian language uses the Cyrillic character set. The default fonts for PDF generation do not support the Cyrillic
character set. Therefore, you must customize the Apache Formatting Objects Processor (FOP) application to use
fonts that do support the Cyrillic character set.

The generic Microsoft Windows Arial TrueType font family (normal, bold, italic, bold-italic) does support Cyrillic.
If you work in a Windows environment, you can use the Arial TrueType font.

To obtain a font that supports a particular language requirement, but which is not currently installed as part of your
operating system, contact your operating system vendor.

The example that follows describes how to configure Apache (FOP) and Guidewire PolicyCenter to print documents
in Russian by using Cyrillic characters in a Windows environment.

The example assumes the following:
» Apache FOP is installed on your machine.
» The fop.jar file is on the class path.
* The Arial fonts are in C: \WINDOWS\Fonts.
* The fonts are TrueType fonts.
* You have a working Guidewire PolicyCenter application.
* You have enabled the proper language for your Guidewire application.

Note: The process for configuring FOP supported fonts that are not TrueType is different. See the
Apache FOP documentation for more information.

Register the fonts with Apache FOP

About this task

The default configuration of Adobe FOP (and the fonts that it uses to build output PDFs) supports only the Latinl
character set, used by languages such as English, German, French, Italian, Spanish, Portuguese, and Dutch. The
default configuration does not support languages with non-Latin alphabets such as Russian (Cyrillic alphabet),
Japanese, and Chinese. Thus, you must specifically configure the fop.xconf file to support the Russian, Japanese,
and Chinese alphabets.

Procedure

1. Copy the following file into directory C:/fopconfig/:
C:/fop/conf/fop.xconf

2. Open fop.xconf for editing and find the following code in the section.

<!l-- auto-detect fonts -->
<auto-detect/>

3. Remove the existing <auto-detect/> element and replace it with the following code.

<!-- Japanese -->

<font-triplet name="Japanese" style="normal" weight="normal"/>
<font-triplet name="Japanese" style="normal" weight="bold"/>
<font-triplet name="Japanese" style="italic" weight="normal"/>
<font-triplet name="Japanese" style="italic" weight="bold"/>

<l-- Chinese -->

<font-triplet

<font-triplet

<font-triplet

<font-triplet

name="Chinese"
name="Chinese"
name="Chinese"
name="Chinese"

style="
style="
style="
style="

normal”
normal”
italic"
italic"

weight="
weight="
weight="
weight="

normal"/>
bold"/>
normal"/>
bold"/>

[q GuiDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

<!-- Russian -->

<font-triplet name="Cyrillic" style="normal" weight="normal"/>

<font-triplet name="Cyrillic" style="normal" weight="bold"/>

<font-triplet name="Cyrillic" style="italic" weight="normal"/>

<font-triplet name="Cyrillic" style="italic" weight="bold"/>

If you do not want to embed the font in the PDF document, do not include the embed-url attribute.

Next steps

The next step is “Register FOP configuration and font family with PolicyCenter” on page 27.

Register FOP configuration and font family with PolicyCenter

Before you begin

Complete the step “Register the fonts with Apache FOP” on page 26 before you perform this step.

About this task

You must specifically add the non-Latinl languages that you want to support in file config.xml.

Procedure

1. Open Guidewire Studio™ for PolicyCenter and press Ctrl+Shift+N, and then search for config.xml.
2. Open config.xml, find parameter PrintFontFamilyName and set it to the following value.

<paramname="PrintFontFamilyName"value="sans-serif, Cyrillic, Japanese, Chinese"/>
Do not change the san-serif designation as this would affect the Latin1 languages. List the non-Latin1
languages in the order shown, with Russian (Cyrillic) first.

3. Find parameter PrintFOPUserConfigFile and set it to the following value.

<paramname="PrintFOPUserConfigFile"value="C:/fopconfig/fop.xconf"/>
This configuration parameter provides a fully qualified path to a valid FOP user configuration file. The
parameter must point to the fop.xconf file that you modified.

4. Stop and start the PolicyCenter server so that these changes can take effect.

Next steps

The next step is “Testing your configuration” on page 27.

Testing your configuration

Before you begin

Complete the step “Register FOP configuration and font family with PolicyCenter” on page 27 before you perform
this step.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

About this task

After you perform the steps to localize printing in a Microsoft Windows environment, test that you are able to create
and print a PDF that uses the correct font. To test the Apache FOP configuration, you must have a PolicyCenter
implementation that supports Russian.

Localized printing in a Linux environment

This example describes how to configure Guidewire PolicyCenter and the Apache Formatting Objects Processor
(FOP) to print Japanese characters in a Linux environment.

The example assumes the following:
* You have a working Guidewire PolicyCenter application.
* You have enabled the proper language for your Guidewire application.

A package manager is recommended for managing the download and installation of the necessary application files
and packages on Linux. One such package manager is yum, which works with the following Linux distributions,
among others:

* Fedora
* CentOS-5
* Red Hat Enterprise Linux 5 or higher
Choose a package manager that works with your particular Linux distribution.

Download and install the required fonts

Before you begin

You must obtain and install a font that supports the language in which you want to print. For example, to print
Japanese characters, you need to install a font that supports Japanese characters. The following are examples of fonts
that support the printing of Japanese characters:

« IPA Gothic

e Sanazami

Procedure

1. Obtain a font from your operating system vendor that supports your particular language requirement.
For example, you can obtain the Sazanami Gothic font from one of the following Japanese-language web
sites:
https://osdn.net/projects/efont/releases/10087
https://ja.osdn.net/projects/efont/
2. After downloading the font file, untar the file and extract sazanami-gothic.ttf to the file directory of your
choice.

Next steps
The next step is “Configure the font” on page 28.

Configure the font

Before you begin

Complete the step “Download and install the required fonts” on page 28 before you perform this step.

About this task

This procedure assumes the use of Japanese font Sazanami Gothic.

https://osdn.net/projects/efont/releases/10087
https://ja.osdn.net/projects/efont/

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Procedure

1. Copy the font that you are installing into the following directory on the Linux machine:
/usr/local/fop
2. Navigate to directory /user/local/fop, if you are not there already.

3. Run the following command in this directory:

java -cp build/fop.jar:1lib/avalon-framework-4.2.0.jar:1ib/commons-logging-1.0.4.jar:
lib/xmlgraphics-commons-2.3.jar:1ib/commons-io-1.3.1.jar
org.apache.fop.fonts.apps.TTFReader
-ttcname "Sazanami Gothic" sazanami-gothic.ttf sazanami-gothic.xml
The example introduces line spacing for readability. In actual practice, this is a single long command string.
This action creates configuration file sazanami-gothic.xml in directory usr/local/fop.

4. Move, or copy, files sazanami-gothic.ttf and sazanami-gothic.xml into the conf subdirectory.

Next steps

The next step is “Register the font with Apache FOP” on page 29.

Register the font with Apache FOP

Before you begin

Complete the step “Configure the font” on page 28 before you perform this step.

About this task

The default configuration of Adobe FOP (and the fonts that it uses to build output PDFs) supports the Latinl
character set only. Languages such as English, German, French, Italian, Spanish, Portuguese, and Dutch use the
Latinl character set. The default configuration does not support languages with non-Latin alphabets such as Russian
(Cyrillic alphabet), Japanese, and Chinese. Thus, you must specifically configure the fop.xcon¥ file to support the
Russian, Japanese, and Chinese alpahbets.

Procedure

1. Open fop.xconf for editing.
To use the vi editor, enter the following at a command prompt:

vi conf/fop.xconf

2. Find the following code in the <fonts> section:

<!-- auto-detect fonts -->
<auto-detect>

3. Immediately above the <auto-detect> section, add something similar to the following example for each non-
Latinl language that you want to support.

<font-triplet name="Japanese" style="normal" weight="normal">
<font-triplet name="Japanese" style="normal" weight="bold">
<font-triplet name="Japanese" style="italic" weight="normal">
<font-triplet name="Japanese" style="italic" weight="bold">

Adding the embed-url attribute embeds the named font in the generated PDF document. This enables one to
view and properly display the PDF on an operating system that does not contain the necessary font.

Next steps

The next step is “Register FOP configuration and font family with PolicyCenter” on page 30.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Register FOP configuration and font family with PolicyCenter

Before you begin

Complete the step “Register the font with Apache FOP” on page 29 before you perform this step.

About this task

You must register your Apache FOP configuration file and font family with PolicyCenter.

Procedure

1. Open Guidewire Studio™ for PolicyCenter and search for config.xml.

2. Find the parameters PrintFontFamilyName and PrintFOPUserConfigFile in config.xml and set them
accordingly.
The following example registers Japanese-language fonts with Guidewire PolicyCenter.

Parameter Description Example value
PrintFontFamilyName The name of the language, or languages, <param name="PrintFontFamilyName"
that PolicyCenter is to support. value="sans-serif, Japanese"/>

PrintFOPUserConfigFile The fully qualified path to a valid FOP con- /usr/local/fop/fopconfig/
figuration file.

3. Stop and start the PolicyCenter server so that these changes take effect.

Next steps

The next step is “Test your configuration” on page 30.

Test your configuration

Before you begin

Complete the step “Register FOP configuration and font family with PolicyCenter” on page 30 before you perform
this step. To test the Apache FOP configuration, you must have a PolicyCenter implementation that supports the

Japanese locale.

About this task

After you perform the steps to localize printing in a Linux environment, test that you are able to create and print a
PDF file that uses the correct font.

Procedure

1. Open Guidewire PolicyCenter.
2. Navigate to a PolicyCenter screen that contains localized strings.

3. Generate and review a localized PDF to verify that the PDF displays the font correctly.

chapter 4

Localizing PolicyCenter string
resources

This topic describes how to localize the string resources that PolicyCenter displays in the application user interface.
These resources include display keys, typecodes, Gosu error messages, product model string resources, and
workflow step names.

Note: Ruleset names and descriptions are not localized as strings. See “Localizing rule set names and
descriptions” on page 45.

See also

* “Localizing workflow” on page 53

Overview of string resources

PolicyCenter uses string resources for the following:
* Display Keys — Strings to display as field and screen labels and interactive error messages
» Typecodes — Strings to display as choices in drop-down lists
* Workflow Step Names — Strings to display as individual step names in workflow processes
* Product model string resources — Strings to display in screens that use product models

You can extract these string resources from PolicyCenter and localize them separately from other application
resources.

Display keys and localization

PolicyCenter stores as key/value pairs the United States English string resources from which it generates field and
screen labels and interactive error messages in the user interface. Guidewire calls these key/value pairs display keys.
You specify the key/value pair of a display key in standard Java property syntax. For example:

Admin.Workload.WorkloadClassification.General = General

PolicyCenter stores the key/value pairs for display keys in display properties files. In the base configuration,
PolicyCenter provides the file display.properties that defines string resources in United States English. In
addition, there are multiple language files, like display_de.properties, display_fr.properties, and
display_ja.properties.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

In Guidewire Studio, you can see these files by navigating in the Project window to
configuration— config— Localizations—Resource Bundle 'display’.

See also

* “Localizing display keys” on page 35
» “Enabling display languages” on page 21

Typecodes and localization

PolicyCenter displays choices and choice descriptions in drop-down lists in the user interface by using typelists that
contain typecode definitions. Guidewire stores the names and descriptions of typecodes as key/value pairs in typelist
properties files.

In the base configuration, the U.S. English string resources for typecodes are provided in the file
typelist.properties. In addition, there are multiple language files, like typelist_de.properties,
typelist_fr.properties, and typelist_ja.properties.

To see these files, open Guidewire Studio™ and navigate in the Project window to
configuration— config— Localizations—Resource Bundle 'typelist'.

You specify the key/value pairs for the name and description of a typecode in standard Java property syntax. For
example:

TypeKey.CoverageType.CPBldgCov = Building Coverage
TypeKeyDescription.CoverageType.CPBldgCov = Building Coverage

See also

* “Localizing typecodes” on page 37
» “Enabling display languages” on page 21

Workflow step names and localization

In PolicyCenter, it is possible to provide localized versions for the names of individual steps in a workflow process.
It is also possible to set a specific language and set of regional formats on each workflow.

See also

* “Localizing workflow” on page 53

* “Localizing workflow step names” on page 54

Exporting and importing string resources

PolicyCenter enables you to export some string resources to an external file, such as display keys and typecodes.

By exporting and importing string resources, you can make all your translations directly in a single file.
PolicyCenter provides separate commands for exporting and importing string resources.

gwb exportLocalizations [-Dexport.file] [-Dexport.language]
gwb importLocalizations [-Dimport.file] [-Dimport.language]

The commands provide parameters that you can use to specify the locations of the export and import files and a
language-specific set of string resources to export and import. The export and import files are in the format of Java
property files.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

See also

» “Exporting localized string resources with the command-prompt tool” on page 33
» “Importing localized string resources with the command-prompt tool” on page 33

* “Localizing string resources by exporting and importing files” on page 34

Exporting localized string resources with the command-prompt tool

PolicyCenter provides a command-prompt tool to manually export certain string resources. The command exports
the following strings resources as name/value pairs:

* Display keys
» Typecodes
* Workflow step names

The export file organizes the strings into translated and non-translated groups. The command provides parameters
that enable you to specify the location of the export file and a language-specific set of string resources to export.

To run the export tool, ensure that the application server is running and navigate to your application installation
directory. Then run the following command:

gwb exportLocalizations -Dexport.file= targetFile -Dexport.language=_LanguageCode

* Command-prompt parameter -Dexport.file specifies targetFile, the name of the file in which PolicyCenter
saves the exported resource strings. You must add the file extension to the file name. By default, PolicyCenter
puts the export file in the root of the installation directory. You specify the directory as follows:

° To leave the export file in the same location, enter only the name of the file to export.

° To save the file in a different location, enter either an absolute path or a relative path to the file from the root of
the installation directory.

» Command-prompt parameter -Dexport.language specifies LanguageCode, the language code that PolicyCenter
uses to determine the files from which to extract the resource strings. The language name must match a
PolicyCenter language type that exists in the LanguageType typelist. For example, specifying ja_JP indicates
that PolicyCenter is to look for property files that have that language code in the file name, such as
display_ja_JP.properties.

See also

* “Importing localized string resources with the command-prompt tool” on page 33

* “Overview of string resources” on page 31

Importing localized string resources with the command-prompt tool

PolicyCenter provides a command-prompt tool to import localized string resources that you previously exported.
The command imports the following string resources as key/value pairs:

* Display keys
» Typecode names and descriptions
» Workflow step names

The command provides parameters that enable you to specify the location of the import file and a language-specific
set of string resources to import.

To run the import tool, ensure that the application server is running and navigate to your application installation
directory. Then run the following command:

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

gwb importLocalizations -Dimport.file= sourceFile -Dimport.language= LanguageCode

» Command-prompt parameter -Dimport.file specifies sourceFile, the file that contains the translated resource
strings. It must be in the same format as a file exported from PolicyCenter. By default, PolicyCenter puts the
export file in the root of the installation directory. You can set the import directory as follows:

° To use the import translation file that is in the default location, enter only the name of the file to import.

° To use the translation file that is in a different location, enter either an absolute path or a relative path to the file
from the root of the installation directory.

» Command-prompt parameter -Dimport.language specifies LanguageCode, the suffix to use in the names of the
property files that PolicyCenter writes to the localization folder. The language name must match a PolicyCenter
language type that exists in the LanguageType typelist, such as fr_FR or ja_JP. For example, specifying ja_JP
indicates that PolicyCenter is to write property files that have that language code in the file name, such as
display_ja_3JP.properties.

See also

» “Exporting localized string resources with the command-prompt tool” on page 33

* “Overview of string resources” on page 31

Localizing string resources by exporting and importing files

You can use the gwb exportLocalizations and gwb importLocalizations commands to work with a single file of
translatable strings.

The export command has the following syntax:

gwb exportLocalizations -Dexport.file=targetFile -Dexport.language=LanguageCode

The exported file has all the string resources, such as display keys, in it, which cannot be guaranteed for any given
property file. The string resources are separated into translated and untranslated strings, which makes it easier to see
which ones you need to translate. The translated stings are extracted from the existing property files.

For example, at a command prompt, enter the following command:

gwb exportlLocalizations -Dexport.file=my-test-en_US.txt -Dexport.language=en_US

This command exports results to the file my-test-en_US.txt in the main PolicyCenter directory.

The following code example shows some of the string resources in the untranslated and translated sections of an
exported file:

#untranslated keys
Workflow.MetroReportWorkflowl.CheckHasReportDocumentReady.Step=CheckHasReportDocumentReady
Workflow.MetroReportWorkflowl.CheckOnInquiry.Step=CheckOnInquiry
Workflow.MetroReportWorkflowl.CheckOnOrder.Step=CheckOnOrder
Workflow.MetroReportWorkflowl.DownloadClosedReport.Step=DownloadClosedReport
Workflow.MetroReportWorkflowl.DownloadReport.Step=DownloadReport

#already translated

Admin.Workload.WorkloadClassification.General=General
AdminData.ActivityPattern.Description.Account_Denial=Review denial decision with Account Manager
AdminData.ActivityPattern.Description.Account_Fatality=Consult Account regarding fatality
AdminData.ActivityPattern.Description.Account_Instructions=Review all Special Handling instructions
AdminData.ActivityPattern.Description.Account_Matter=Review matter-related Special Handling instructions
AdminData.ActivityPattern.Description.Account_Negotiation=Review negotiation strategy with Account

Because the export was done for en_US, all the display keys, typekey names, and so on are in U.S. English.
After you make your translations, import the translated file.
The import command has the following syntax:

gwb importLocalizations -Dimport.file=sourceFile -Dimport.language=LanguageCode
All strings in the file that you import, whether translated or not, are saved in property files with that extension.

PolicyCenter extracts the stings for the appropriate file and updates that file. For example, typekey strings are
extracted and stored in typelist_LanguageCode.properties file for that locale code.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

See also

» “Exporting localized string resources with the command-prompt tool” on page 33

» “Importing localized string resources with the command-prompt tool” on page 33

Localizing display keys

PolicyCenter initializes the display key system as it scans for the display key property files. These files are named
display.properties for the fallback language (U.S. English in the base configuration) and
display_languageCode.properties for additional languages. For example, display keys in German are in the file
display_de.properties.

You can see these files in Guidewire Studio™ by navigating to configuration—config— Localizations—Resource
Bundle 'display’.

This node contains display key property files for each of the languages supported by Guidewire.

It is possible to provide translated display keys in either of the following ways:

Translation technique Related topic

Using the Studio Display Keys editor “Localize display keys by using the Display Key editor” on page 36

Using the display key import and export tools “Exporting and importing string resources” on page 32

Many of the display keys you localize are string values that PolicyCenter displays as labels or messages. There are
no restrictions on the translated text for these types of display keys.

You can also localize QuickJump commands in display key property files. When you localize a QuickJump
command, there must not be any spaces in the translated text. For example, the following base configuration display
key in display.properties must be translated into a term with no spaces:

Web.QuickJump.RunBatchProcess = RunBatchProcess

See also

» “Display keys and localization” on page 31
* Configuration Guide
* Application Guide

PolicyCenter and the master list of display keys

On startup, PolicyCenter uses the display property files to generate a master list of display keys for use in the user
interface. For each property file, PolicyCenter loads the display keys and adds each display key to the master list
under the following circumstances:

* The master list does not already contain the display key.

» The master list already contains the display key, but, the display key in the master list has a different number of
arguments from the display key being added. In this case, PolicyCenter logs a warning message noting that it
found a display key value with different argument lists in different locales. For example:

Configuration Display key found with different argument lists across locales:
Validator.Phone

As PolicyCenter creates the master display key list, it scans for display.properties and
display_LlanguageCode.properties files in the following order:

1. The application primary language code properties file, as set by configuration parameter
DefaultApplicationLanguage

2. All other language code properties files configured for use by the server

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

3. The fallback language code properties file, which in the base configuration is display.properties
4. All remaining language code properties files

After PolicyCenter creates the master list of display keys, the application checks the display keys for the default
language against the master list. PolicyCenter then logs as errors any display keys that are in the master list but are
missing from the primary application language. For example:

ERROR Default application locale (en_US) missing display key: Example.Display.Key

Because the error message returns the display key name, you can use that name to generate a display key value in
the correct display key property file.

Localize display keys by using the Display Key editor

About this task

It is possible to enter a localized version of a display key directly in the Guidewire Studio editor.

Note: It is not necessary to use Studio to localize display keys. If you have a large number of
translated strings to enter, you can use the export and import commands. With these commands, you
export the strings, translate them, and import the translated strings into Studio. See “Exporting and
importing string resources” on page 32.

Procedure

1. Open Guidewire Studio.

2. In the Project window, navigate to the following location and double-click display.properties to open this
file in the editor:

configuration— config— Localizations—Resource Bundle 'display’
3. Place the cursor on the display key line that you want to edit.
4. Click the orange dot that appears at the beginning of the selected line and click Edit Display Key.

5. Modify the text for the language that you want to modify in the appropriate place in the Edit Display Key
dialog.
The editor saves the text that you enter for a specific language in the appropriatly named
display_LanguageCode.properties file.

Identifying missing display keys

Guidewire provides a display key difference tool that does the following:
» Compares each language configured on the server against the master display key list.
» Generates a file that contains a list of any missing keys.
To generate a display key difference report, run the following command from the PolicyCenter installation directory:

gwb diffDisplayKeys
If necessary, the diffDisplayKeys tool creates a build/missing-display-keys/config/locale directory under
the PolicyCenter installation directory, where it stores the generated diff files.
If the tool detects that a language has missing display keys:

* The tool creates a display_LanguageCode .properties file, using the language code for that language to name
the file.

* The tool populates the file with the list of missing keys.

Each display_LlanguageCode.properties file contains a list of display keys that are in the master list but not in
the localization files. The format of the file is exactly the same as the display key configuration files. For example,
the following code illustrates the contents of the file for en_US:

#

Missing display keys for locale
en_US

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

#

Java.Validation.Messages.SIMPLE.SimpleGroupHeaderLabel = Es befinden sich {0} Meldungen auf Seite {1}
Java.Validation.Messages.SIMPLE.SimpleGroupHeaderLabelSingleMessage = Es befindet sich eine Meldung auf Seite {0}
Web.ClaimSummaryDV.Title = {Term.LossDetails.Proper}

Note: PolicyCenter does not generate a display_LanguageCode.properties file for a language that
does not have any missing display keys.

Working with display keys for later translation

It is possible to create a display key in a language code properties file that is not actually localized yet. This display
key is simply a placeholder string for a display key that you intend to translate at some point. If you create one of
these to-be-translated display keys, then Guidewire recommends that you add a suffix of [TRANSLATE] to each
display key that you create as a placeholder. For example:

Actions [TRANSLATE]

The suffix can be any string that is meaningful. Use the same string in all cases to make it easy to find the
placeholder display keys. Using a string such as [TRANSLATE] makes it easy to see the string in the PolicyCenter
interface. It also makes it easy for users to understand that the display key has not yet been translated.

Localizing typecodes

You can provide localized typecodes for a typelist in the following ways:
Using the gwb export and import commands

Use these commands to translate all typecodes by editing a single text file. See “Localizing string resources by
exporting and importing files” on page 34.
Using the Typelist Localization editor

Enter translated values for individual typecodes directly through the Typelist editor. See “Localize typecodes in a
typelist properties file”” on page 37.

Editing the typelist_LanguageCode.properties file for the associated language

Navigate in the Guidewire Studio Project window to configuration— config— Localizations—Resource Bundle
'typelist' and open the file so that you can edit it.

Note: In the base configuration, the file typelist.properties contains the U.S. English typekey
name definitions.

Localize typecodes in a typelist properties file

About this task

You can use the Localization editor in Guidewire Studio™ to translate resource strings for typekeys.

Procedure

1. Navigate in the Studio Project window to configuration—config— Localizations— Resource Bundle 'typelist'.
2. Open the typelist properties file for the language and typelist that you want to localize.
For example, double-click typelist_de.properties.
3. Enter TypeKey.Typelist. Typecode to provide a localized version of a typecode name.
For example, enter the following for the typekey name field:
TypeKey.PhoneType.Cell = Mobil
4. Enter TypeKeyDescription.Typelist.Typecode to provide a localized version of a typecode description.
For example, enter the following for the typekey description field:
TypeKeyDescription.PhoneType.Cell = Mobil

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

See also

* “Localizing string resources by exporting and importing files” on page 34

Setting a localized sort order for localized typecodes

You can set the sort order for typecodes in a typelist for specific languages in Guidewire Studio.

IMPORTANT Any change that you make to a typelist sort order file triggers a database upgrade.

Set the sort order for typecodes in a typelist

About this task

You set the sort order in a . sort file. PolicyCenter does not provide any sort order files in the base configuration.
You must put any . sort file that you create in the Localizations folder, as shown in this example.

Procedure

1. Create a file that has the name of the typelist and locale code with a file extension of . sort.
For example, State_de. sort.

2. Save the file in configuration— config— Localizations.
PolicyCenter stores the sort order information by language in the typelist table.

3. In the file, list the typecode display names in the appropriate language, one per line, in the order in which you
want them to appear.

Lines that are not typecode display names or that are duplicate typecode display names are reported as errors
in the log file. You can also add comments on separate lines. Each comment line must start with two slash
characters, //.

Sort order, typecode order, and typekey priority

A typical use for a . sort file is to support Japanese with other languages on the same server. For example, you
might want to provide a sort order for Japanese prefectures, which customarily are in order from north to south—
Hokkaido, Aomori, Iwate, so on.

Typically, instead of using . sort files, typecode order is determined by the priority defined in the typelist and by the
sort order of the typecode display name. If a . sort file is present for a language, then the typekey priority is not
used to determine sort order for that language. See “Determining the order of typekeys” on page 140.

Sort prefectures in alphabetic order

About this task

In the base configuration, the State typelist uses typekey priority to make the Japanese prefectures appear in the
north-to-south order. Hokkaido has priority 1, Aomori has priority 2, Iwate has priority 3, and so forth. However,
English-speaking, non-Japanese users might expect to see the prefectures listed in alphabetic order.

Procedure

1. Add aState_ja_3JP.sort file in configuration—config—Localizations.
2. In that file, list the prefectures in Japanese and in north-to-south order.
3. Then do either of the following:

* Remove the priorities for the prefectures from State. ttx file.

* Create an empty State_en_US. sort file in the Localizations folder.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Example of state typelist sort file elements

The following example is not a likely one and is included only to demonstrate the elements of the file. It applies to
typecodes from the State typelist. The file causes some U.S. western states to be listed in the order specified, and
first in any U.S English list of states in the PolicyCenter user interface. The other lines in the file do not affect the
list of states because they start with //. The file is named State_en_US.sort and is intended for U.S. English:

// sort order definition for some U.S. western states

Washington

Oregon

California

Nevada

Utah

Arizona

// Other states will be listed in
// alphabetical order after Arizona.

Any typecodes in the typelist that are not in the . sort file are listed after the typecode display names listed in
the . sort file. These typecodes are ordered according to the sort order specified in the
language_LlanguageCode . xml file for that language.

Accessing localized typekeys from Gosu

Gosu provides three String representations that you can use for typekeys.

Typekey property Description
typelist. typekey.Code String that represents the typecode
typelist.typekey.DisplayName Localized language version of the entity name

typelist.typekey.UnlocalizedName Name listed in the data model

For example, to extract localized information about a typekey, you can use the following:

var displayString = myTypekey.DisplayName

The following code is a more concrete example.

print(AddressType.TC_BUSINESS.DisplayName)

It is important to understand that the display key reference acts as a method call rather than as a value. If the
language setting for the user changes, then the display key value changes as well. However, the value stored in
displayString does not automatically change as the language changes.

Localizing product model string resources

Note: You manage most product model functionality through Guidewire Product Designer.

Guidewire PolicyCenter uses many of the data fields in the PolicyCenter data model to display information in the
PolicyCenter interface. These data fields are string resources that symbolically represent business data configuration
used in various places in Guidewire PolicyCenter. These data fields are the same key/value pairs used in other
application property files.

Guidewire stores these string resources in the files productmodel.display.properties and
productmodel.display_LlanguageCode.properties. For all languages in the base configuration, Guidewire
provides translated versions of the following:

* Product model Name and Description fields
* Question Name and Description fields
* Question Text and Failure message fields

Guidewire provides the U.S. English version of these fields in productmodel.display.properties.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

To access these files, navigate in the Studio Project window to configuration— config— Localizations—Resource
Bundle ('productmodel.display').

See “Localizing PolicyCenter string resources” on page 31 for details of working with display string property files.

Translating product model strings in Product Designer

To facilitate translating product model strings in Product Designer, use the Display Key Values by Language dialog
box. You access this dialog box through the Translate icon that appears at the end of selected product model fields.
In this dialog, you can add a translated version of the string label for any defined language in PolicyCenter.

Product Designer adds any change that you make to the product model field labels to the active change list. Product
Designer pushes the active change list back to the application configuration files after you commit your change. See
the Product Designer Guide for a discussion of how change lists work in Product Designer.

For you to see the field label change in PolicyCenter, you must manually push the change list back to PolicyCenter.

Localizing coverage term options

Coverages in the PolicyCenter product model can have coverage terms. A coverage term is a statement or a value
that defines the extent or limit of the coverage. A coverage term option is one of a set of coverage terms pertaining
to a specific coverage. Coverage term options can be textual or numeric, but are always stored as strings. You can
localize coverage term options in Product Designer.

Textual coverage terms options are descriptions that help classify a limitation or extent of the coverage. Examples of
textual coverage term options include:

* Class 1 Employees
* Class 2 Employees
» Alaska Attorney Fees Limit

Numeric coverage term options include single values and packages. A package is a set of values selected as a single
item. Examples of numeric coverage term options include:

« 10,000
. 250K
« $20,000/$50,000/$10,000

The string value that users see after selecting a numeric coverage term option is stored in the Description of the
option. The actual numeric value represented by this description is stored in the Value of the option. For example:

* Description = “$12,500”
* Value = 12500

Because they are stored as strings, numeric coverage term option display values often include separators, decimal
points, and currency symbols. And because they are stored as strings, these separators, decimal points, and currency
symbols are not influenced by regional settings. Furthermore, the sample coverage term option values that
Guidewire provides in the PolicyCenter base configuration are potentially suitable only for a North American
deployment.
Therefore, to localize numeric coverage term options, you must:

* Choose coverage term option values that are suitable for your target region.

* Localize any currency symbols, separators, or decimal points to suit your target region.

chapter 5

Localizing PCF fields

There are a number of localizations of PCF fields that you can perform. They are dependent on the display language
being used by PolicyCenter.

See also

» “Selecting language and regional formats in PolicyCenter” on page 14

Setting the default width for input field labels

The following PolicyCenter installation file defines the default widths to use for PCF field labels in various
languages:

6_platform_il8n.scss
This file exists in the following location in Guidewire Studio for PolicyCenter:
configuration— webresources—sass—themes—global_variables—2_platform_globals

This file is read-only in Guidewire Studio. To change these values, modify the theme to override these variables.

See also

* For information on modifying a theme, see the Configuration Guide.

Localizing hints for date and time fields

You can localize hints for date, time, and date-time fields in PolicyCenter screens so they can change based on the
language currently in use in the application. Hints display as temporary text in the field and as a tooltip. The hint
disappears when the user starts to enter data.

You use Guidewire Studio to localize regional format patterns for date-time field display and input in
localization_LlocaleCode.xml files. In these files, you can specify values for date and time formats in the
<GWLocale> element by defining settings for <DateFormat> and <TimeFormat>.

PolicyCenter can display a hint for a date-time field based on the format values it finds in the current region’s
localization_LlocaleCode.xml file. You can additionally localize date and time hints by language, enabling the
hints to display letters that reflect the current language selection. You do this localization in
language_LlanguageCode .xml files.

You define and manage language characteristics in language_LanguageCode . xml files. You can define a
language_LlanguageCode . xml file for each language you want to support, such as language_en_US.xml. You
access the localization files in Studio by navigating in the Project window to configuration—config— Localizations.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Note: Because you cannot define hints for Japanese characters—katakana and hiragana—the Japanese
Imperial Calendar does not support configuring date-time hints.
Each language_LlanguageCode . xml file contains a <GWLanguage> element. This element supports the following
elements that you can use to configure and localize date-time field hints:

* <FormatPatternLocalization> — The XML subelement of <GWLanguage> for this localization.

* useExampleDate — An optional boolean attribute of <FormatPatternLocalization> that specifies whether the
hint for a date-time field is to use a sample date-time element, with numbers, or a format pattern. By default, this
attribute is false, and the hint for a date-time field uses a date-time pattern format, such as MM/dd/yyyy
hh:mm:ss. If useExampleDate is true, the date-time field hint uses numbers instead of the pattern format. In
either case, the hint uses the <DateFormat> and <TimeFormat> pattern definitions if they are defined in the
region’s localization_LocaleCode. xml file.

For example, the following line of XML code defines useExampleDate attribute to be true:

<FormatPatternLocalization useExampleDate="true"/>

<PatternSymbolLocalization> — A subelement of <FormatPatternLocalization> that maps the letters used
for the Java date-time format pattern from the Java values to the localized value.

° java — The value of the Java string to be localized.

° localized — The localized value of the Java string. Because this value is a string, it is possible to define a
localized value for a Java pattern letter that is more than one letter.

For example, the following code maps the Java d format pattern letter (the day part of a date) to French j (for
jour):

<FormatPatternLocalization>
<PatternSymbolLocalization java="d" localized="j"/>
</FormatPatternLocalization>

See also

* For information on configuring date and time fields for a region, see “<GWLocale> XML element of a
localization file” on page 69.

* For information on configuring languages, see “Working with languages” on page 19.

chapter 6

Working with a localized Guidewire
Studio

Guidewire Studio is built on JetBrains IntelliJ IDEA. JetBrains does not support localization of IntelliJ. However,
Guidewire does provide, limited localization support for the Guidewire plugins that comprise Guidewire Studio in
IntelliJ. Guidewire provides translations for the Studio editors for a limited number of languages only.

To support viewing Guidewire Studio editors in a different language, Guidewire provides the following:
» Guidewire application language files for specific languages
» Guidewire Studio language files for specific languages

Application language files provide translations for application resources such as field labels in the user interface.
You also see some of these translated elements in the Studio PCF editor. Additionally, the application language files
provide translation for Gosu error messages in Studio.

In particular, in the base configuration:

* Guidewire provides a display.properties file and a typelist.properties file that provide U.S. English
definitions of strings in elements that you edit in Studio editors.

* Guidewire provides display_LlanguageCode .properties and typelist_LlanguageCode.properties files that
provide translations of strings in elements that you edit in Studio editors..

* Guidewire provides internal property files in JAR files that translate strings in Guidewire Studio editors, such as
labels for user interface elements. These files support Japanese.

If you enable a language in addition to U.S. English, the display.properties or display LanguageCode.properties
files affect PCF files that you open in the PCF editor. In those files, you see translated strings for all the PCF
elements that use display keys, such as labels, buttons, and so on.

The internal display property files for Studio files provide translations for some of the labels and controls in the
Guidewire editors. Not all labels and controls can be translated due to the limitations of IntelliJ. Therefore, it is
possible to see a mixture of English and non-English labels and controls in the Studio user interface.

See also

» “Specifying a language for Studio” on page 44
» “Enabling display languages” on page 21

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Specifying a language for Studio

You can specify a display language for Guidewire Studio either from the command line or in the Settings dialog after
Studio starts up. As described in the previous topic, specifying a display language affects only certain aspects of the
Guidewire Studio menus and windows.

Specify a language for Studio in the Settings dialog

About this task

In Guidewire Studio, you can change to a different display language if the language is supported by Guidewire.

Note: You can see the supported languages by navigating in the Project window to
configuration— config— Localizations— Resource Bundle ('display"').

Procedure

1. In Studio, navigate to File—Settings— Guidewire Studio.
2. At the top of the Guidewire Studio settings page under Language Settings, click Language.

3. In the drop-down list that opens, choose either Japanese or Chinese to see the full set of user interface
translations.

4. If you open a PCF file in the editor, its labels, button names, and other strings that use display keys in are in
the language you chose. If you chose a language other than Japanese or Chinese, all other Studio messages,
labels, menus, and so on continue to be in English.

See also

» “Enabling display languages” on page 21

Viewing Unicode characters in Studio

You can define Unicode characters in elements of Guidewire Studio and then set a theme in your operating system
so you can see Unicode characters.

Elements of Studio that support viewing Unicode

You can define and view Unicode characters for the following elements in Guidewire Studio™:
» Database column descriptions, but not names
¢ Gosu identifiers, such as class names, method names, and variable names
* Gosu comments
* Typekey/Typecode names and descriptions, but not codes
* XSD element and attribute names
* Web service method names

You cannot define Unicode values for the following elements visible in Studio:
¢ Database column names, which are limited to a-z, A-Z, 0-9, and underscore
 PCF file names or the ID property
» Typekey and Typecode codes

Set Studio to view Unicode characters

Before you begin

Guidewire does not supply fonts for your system. You must download the fonts for the languages that you want to
use in Guidewire Studio. Microsoft Windows has downloadable support for many languages. For example, if you

[q GuiDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

install support for Korean, Chinese, or Japanese, the downloaded files include Unicode character support for the
characters used by those languages. Linux might require special font downloads.

About this task

To see Unicode characters in Studio, set a theme that is appropriate for your operating system.

Procedure

1. In Studio, navigate to File—Settings— Appearance.

2. Change the Theme setting to a value that works for your operating system.
+ If you are on Microsoft Windows, change the theme to Windows.
+ If you are on Linux, change the theme to Nimbus.

3. Click OK.

Localized Gosu error messages

Guidewire provides localized Gosu error messages in read-only property files that are stored in JAR files. You
cannot edit these files. The languages supported are U.S. English and Japanese.

Localizing rule set names and descriptions

In Guidewire Studio™, it is possible to show rule names, rule set names, and rule set descriptions in a language
other than English. To display a rule name or a rule set name and description in another language, you can translate
these items in the definition file for that rule or rule set.

In Guidewire Studio™, to access the rule sets, navigate in the Project window to configuration— config—Rule Sets.
In the application directory structure, Guidewire stores rule-related files in the following location:

modules/configuration/config/rules/...

Following is a description of the rule file types and what you can localize in each file type.

File type Rule type Translatable unit Example
.grs Rule set Rule set name @gw.rules.RuleName("Translated rule set
name")
Rule set description @gw.rules.RuleSetDescription("Translated

description")

.gr Rule Rule name @gw.rules.RuleName("Translated rule name")

To modify these files, open them in a text editor in your system directory structure and not in Guidewire Studio™.

You can view only a single language translation of a rule set name or description in Studio. You cannot provide
multiple translations at once, as you can with string translations.

Setting a language for a block of Gosu code

You can set a specific language in any Gosu code block by wrapping the Gosu code in any of the following methods.

// First method - Sets language only
gw.api.util.LocaleUtil.runAsCurrentLanguage(alternatelLanguage, \ -> { code })

// Second method - Sets both language and region
gw.api.util.LocaleUtil.runAsCurrentLocaleAndLanguage(alternatelLocale, alternatelLanguage, \ -> { code })

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Note: The second method sets both region and language at the same time. This topic covers setting the
language only.

A typical use of this feature is to override the current language that the Gosu code block uses by default. The default
current language is specified by the current user or the DefaultApplicationLanguage parameter in config.xml. If
neither is set, PolicyCenter uses the browser language setting.

Method parameters

The two listed methods use some, or all, of the following parameters.

alternateLocale

An object of type ILocale that represents a regional format from the LocaleType typelist. Specify a GWLocale
object for this parameter.

alternateLanguage

An object of type ILocale that represents a language from the LanguageType typelist. Specify a GWLanguage
object for this parameter.
\ -> { code }

A Gosu block as a GWRunnable object—the Gosu code to run in a different locale or language.

Specifying an ILocale object for a language type

To run a block of Gosu code with a specified language, you must use a language object of type GWLangauge for the
first parameter to runAsCurrentLangauge. You can specify the object in a number of ways:

* Use the gw.api.util.LocaleUtil.toLanguage method to provide a GWLanguage object that corresponds to a
Gosu typecode in the LanguageType typelist. You can specify the parameter to this method by using typecode
syntax, such as LanguageType.TC_EN_US. The typecode has to be defined in the LanguageType typelist.

* You can specify a typecode of the correct type directly, without using the toLanguage method. For example, for
U.S. English, use gw.i18n.ILocale.LANGUAGE_EN_US. This syntax requires that the language typecode en_US be
defined the LanguageType typelist.

* You can specify the first parameter by using a method on LocaleUtil that can get the current or default
language. For example, getCurrentLanguage and getDefaultLanguage.

You can add a typecode to the LanguageType typelist. If you add a new typecode to this typelist, you must restart
Guidewire Studio™ to be able to use it in gw.il8n.ILocale.

IMPORTANT During development, if you make a change that requires that a language typecode in the
LanguageType typelist not be in effect when you restart, you must retire that language typecode. Do
not delete the language typecode, or you might have database errors when you restart the application.

The following example Gosu code sets U.S. English as the language for a display string, overriding the current
language:

uses gw.api.util.LocaleUtil

// Run a block of Gosu code that prints the display string in U.S. English

LocaleUtil.runAsCurrentLanguage(

LocaleUtil.toLanguage(LanguageType.TC_EN_US),
\-> {print(displaykey.Activity)})

See also

+ “Setting regional formats for a block of Gosu code” on page 75
* “Add a locale code to the LocaleType typelist” on page 68

* For information on Gosu blocks, see the Gosu Reference Guide

[GUIDEWIRE

Guidewire PolicyCenter 10.1.2 Globalization Guide

Methods on gw.api.util.LocaleUtil

In addition to runAsCurrentLanguage, runAsCurrentlLocaleAndLanguage, and runAsCurrentLocale, the class
gw.api.util.LlocaleUtil provides a number of other methods useful in working with localization, including the

following:
Method Description
canSwitchLanguage Returns boolean true if the current user is assigned to a role that has the usereditlang per-
mission, which allows the user to switch to a different language.
canSwitchLocale Returns boolean true if the current user is assigned to a role that has the usereditlang per-
mission, which allows the user to switch to a different locale.
getAllLanguages Returns a list of the typecodes of all languages defined in the LanguageType typelist.
getAllLocales Returns a list of the typecodes of all locales defined in the LocaleType typelist.
getCurrentlLanguage Returns the effective language for the thread as a GWLanguage object. This language can be, in
order of priority, the temporary setting, such as by runAsCurrentLanguage, the user setting,
or the system setting.
getCurrentLocale Returns the effective locale for the thread as a GWLocale object. This locale can be, in order of

priority, the temporary setting, such as by runAsCurrentLocale, the user setting, or the sys-
tem setting.

getCurrentLanguageType

Calls getCurrentLanguage and returns a LanguageType typecode.

getCurrentLocaleType Calls getCurrentLocale and returns a LocaleType typecode.

getDefaultLanguage The system setting for the language, set in configuration parameter
DefaultApplicationlLanguage.

getDefaultLocale The system setting for the locale, set in configuration parameter DefaultApplicationlLocale.

getlanguagelabel Returns the localized display name for the language as a String. For example, if the current
language is English and the method parameter is LanguageType.TC_DE_DE, the method re-
turns "German". However, if the current language is German, the method returns "Deutsch".

getlLocalelabel Returns the localized display name for the locale as a String. For example, if the current lan-
guage is English and the method parameter is LocaleType.TC_DE_DE, the method returns
"German (Germany)". However, if the current language is German, the method returns
"Deutsch (Deutschland)".

toLanguage Converts a LanguageType typekey to a GWLanguage object and returns it as an ILocale object.

tolLocale Converts a LocaleType typekey to a GWLocale object and returns it as an ILocale object.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

chapter 7

Localizing administrative data

Guidewire refers to certain types of application data as administration data. For example, activity patterns are
administrative data. For selected fields in administrative data, PolicyCenter stores localized values directly in the
application database.

You enter translations for administration data directly in PolicyCenter screens that you can open on the
Administration tab. If you have configured PolicyCenter for multiple languages, for entities with localization tables,
you see a Localization list view at the bottom of a screen. This list view has a row for each enabled language in the
application. Each row has fields showing which elements on that screen you can localize.

Specifying localized columns in entities

To accommodate localized values for shared administrative data or any entity data, you can specify that a column
contains localized values in the database. To configure an entity to store localized values for a column, in Guidewire
Studio, add a localization element as a child of the column element for the entity. You select the entity and then
right-click the column you want to localize and choose Add new—localization.

Adding a localization element to a column causes a localization table to be created during the next database
upgrade. A localization table stores localized values for a column for every language other than the default
application language. The column itself stores values for the default application language.

The localization element requires that you specify a tableName attribute, which is the name of the localization
table. This name has length restrictions and a special format. For an example, see “Localization tables in the
database” on page 50.

Localization attributes

Guidewire provides several attributes on the localization element on column that affect the use of the element.
The following list describes each attribute:

Attribute Type Description

nullok Boolean This attribute is required. Set it to the same value as the nullok attribute
for the column to which you are adding the table.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Attribute Type Description

If you set this attribute to false, PolicyCenter flags missing entries that it
finds during a database consistency check, but it can start up with these
missing entries. If PolicyCenter is configured with multiple languages:
e PolicyCenter stores the values for the default application language in
the main database table of the entity.
¢ PolicyCenter stores the values for additional languages in a separate
localization table.
During a consistency check, PolicyCenter flags entries in the main database
table for the default language if corresponding entries for additional lan-
guages cannot be found in the localization table. Entries flagged as missing
additional languages are warnings only. A missing language value does not
prevent the server from starting.
Note: If only one language is configured, PolicyCenter does not run the
consistency check.

tableName String The name of the localization table. Use the following format for this name:
mainEntityNameAbbrevation_columnNameAbbreviation_110n

IMPORTANT: The table name must be no longer than 16 characters. If the
name exceeds this length, the application server will not start.

extractable Boolean Default value is false. If you set this attribute to true, PolicyCenter adds
the localization table to the archive for the entity. See the Configuration
Guide.

overlapTable Boolean Default value is false. Overlap tables are tables in which individual table

rows can exist either in the domain graph or as part of reference data, but
not both. The database table itself exists both in the domain graph and as
reference data. If you set this attribute to true, PolicyCenter marks the lo-
calization table as an overlap table. See the Configuration Guide.

unique Boolean Default value is false. If you set this attribute to true, PolicyCenter enfor-
ces that for each language the values are unique and there are no dupli-
cates.
If the entity is of type effdated or effdatedbranch, do not set unique to
true. See the Configuration Guide.

See also

o System Administration Guide

Localization tables in the database

PolicyCenter stores the localized values for columns that have a localization element in separate localization
tables in the database. PolicyCenter generates localization tables automatically. Guidewire recommends that you use
the following format for the table name attribute.

mainEntityNameAbbrevation_columnNameAbbreviation_l1en

IMPORTANT The length of the table name must not exceed 16 characters.

For example, the localization table name for the Subject column of the ActivityPattern entity uses the
abbreviation actpat for the main entity and sbj for the column name:

actpat_sbj_l1on

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Localization tables have the following columns:
* Owner — An integer that represents an ID of the owner
* Language — A typekey to the LanguageType typelist
* Value — A column of type String

Localization tables contain localized values for configured languages other than the default application language.
The localized column itself contains values for the default application language.

System table localization

System tables are database tables that support business logic in PolicyCenter lines of business. Developers who use
Guidewire Studio define system tables with needed columns as entities in the data model. Business analysts who use
Product Designer can then examine, edit, and enter values for the system tables columns.

System tables provide additional metadata beyond the capacity of typelists. System tables typically provide storage
for information that must be maintained periodically by non-developers. Examples include:

¢ Class codes

* Territory codes
* Industry codes
* Reason codes

» Reference dates

» Underwriting companies

See also

* For complete information on system tables, see the Product Model Guide.

Product Designer System Table editor

In Product Designer, you can examine, edit, and enter values for system table columns. In addition, you can enter
localized values for localized system tables columns.

In Product Designer, the System Table page displays content for localized columns in the language that you select in
the User Settings page. If a localized column has a value for that language, the column displays it in the System Table
page. If a localized column does not have a value for that language, the column is empty. To examine, enter, or edit
values for other languages, click the Translate button to display the Display Key Values by Locale dialog box.
Additionally, you can directly edit system table display properties files in Studio.

See also

* For information on configuring a column as a localized column, see “Specifying localized columns in entities” on
page 49.

¢ For information on how the database stores localized values, see “Localization tables in the database” on
page 50.

Localizable tables in PolicyCenter

The default configuration of PolicyCenter supports localizing the following system table columns.

System table file System table entity Localized columns

bop_class_codes.xml BOPClassCode Classification

class_code_basis.xml ClassCodeBasis Name, Description

cp_class_codes.xml CPClassCode Classification

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

System table file System table entity Localized columns
gl_class_codes.xml GLClassCode Classification
industry_codes.xml IndustryCode Classification
risk_classes.xml RiskClass Description
territory_codes.xml DBTerritory Description
wc_class_codes.xml WCClassCode Classification, ShortDesc

Localizing system table XML files

Guidewire recommends that you use the Product Designer system table editor to make changes to system tables.
However, if you need to make numerous changes for localization, you can modify the system table files directly.
System tables are in XML format.

The localization elements in each system table have a similar XML structure. In the system table XML file,
elements that can be localized use a 1anguage attribute to provides translated text in for that system table.

In the following CPClassCode system table example, the language attribute of the Classification element is used
to provide German, U.S. English, Spanish, French, Italian, Dutch, Portuguese, and Russian text for the
Classification field.

<CPClassCode public-id="CP_0082_5">

<ClassIndicator>5</ClassIndicator>

<Classification language="de">Kldarwerke - Pumpenhduser, Chloranlagen, Faultiirme, Filter usw.</Classification>

<Classification language="en_US">Sewage Treatment Plants - pump houses, chlorinators, digesters, filters, et</
Classification>

<Classification language="es">Plantas de tratamiento de aguas residuales: estaciones de bombeo, cloradores,
digestores, filtros, etc.</Classification>

<Classification language="fr">Usine de traitement des eaux usées : pompes, électrolyseurs, digesteurs, filtres,
etc.</Classification>

<Classification language="it">Impianti di trattamento delle acque reflue - locali pompe, cloratori, digestori,
filtri ecc.</Classification>

<Classification language="nl">Afvalwaterzuiveringsinstallaties: pomphuizen, chloreertoestellen, gistingstanks,
filters, enzovoort</Classification>

<Classification language="pt">Usinas de tratamento de esgotos - casas de bomba, cloradores, digestores, filtros
etc.</Classification>

<Classification language="ru">KaHanu3aLMWOHHbIE OYUCTHbIE COOPYXEHWUA — 3[4aHUSA HACOCHON CTaHLUMUM, XIOpaTOpHble
YCTaHOBKM, YTUIN3AUMOHHbIE KOT/bl, dunbTpbl, et</Classification>

<Code>0082</Code>

<EffectiveDate>2000-01-01 00:00:00.000</EffectiveDate>

<ExpirationDate />
</CPClassCode>

Note: In the base configuration, there are also translations for Japanese and Chinese that are not
shown in the preceding example.

chapter 8

Localizing workflow

At the start of the execution of a workflow, PolicyCenter evaluates the language and locale set for the workflow.
PolicyCenter then uses that language for notes, documents, templates, and similar items associated with the
workflow. The language and locale that the workflow uses depend on the settings of the user that executes the
workflow code.

Note: See “Localizing templates” on page 59 for information on localizing application documents,
notes, and emails.

Set the workflow language or region

About this task

It is possible to set the workflow region and the workflow language independently of the default application
language and region in Guidewire Studio™.

Procedure

1. Open Guidewire Studio for PolicyCenter.

2. In the Studio Preject window, navigate to the following location and double-click the workflow node of
interest to open it in the Workflow editor:

configuration— config— Workflows
3. Click the background area in the workflow layout view.
This action opens the Properties area at the bottom of the workflow area.
4. In this Properties area, you can enter one of the following:
* A fixed name for the language or region
+ A Gosu expression that evaluates to a valid type for the language or region

For example:

Type Gosu

Fixed string gw.il8n.ILocale.EN_US

Variable expression gw.api.util.LocaleUtil.tolLanguage(PolicyPeriod.Policy.PrimaryLanguage)
gw.api.util.LocaleUtil.getCurrentUserLanguage()

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Localizing workflow step names

Guidewire provides translated versions of workflow step names. PolicyCenter displays translated step names in the
following screens.

Workflows screen

On the Administration—Monitoring— Workflows search screen, the workflow summary shows the last completed
workflow step. Only administrative accounts can access this screen.

Workflow Detail screen
On the Workflows screen, select a workflow to view the log for that workflow that shows all the workflow steps.

Additionally, Guidewire Studio can show translated step names in the Workflow editor if you specify the translated
language as you start Studio.

There are two techniques you can use to translate workflow step names:
* To translate a small number of names, see “Translate workflow step names in Studio” on page 54.

* To translate a large number of names, see “Export workflow step names as string resources for translation” on
page 55.

See also

» “Selecting language and regional formats in PolicyCenter” on page 14

* “Specifying a language for Studio” on page 44
Translate workflow step names in Studio

About this task

Guidewire provides translated step names for a number of languages. You can translate workflow step names
directly in the Guidewire Studio™ Workflow editor. This technique is useful if you want to translate a small number
of names.

Procedure

1. Open Guidewire Studio for PolicyCenter.

2. In the Studio Project window, navigate to the following location and double-click the name of workflow that
you want to open:

configuration— config— Workflows
3. Click the Text tab at the bottom of the editor to show the XML for the workflow.
4. Each translation of a workflow name is in a <StepLocalization> element.
5. Find the element for the locale you want to translate.
For example, for a German translation, look for:
locale= "de"
6. Enter the translation for the workflow name in the name element.
For example, for the U.S. English name "Pending Step", enter:

name= "Ausstehende Stornierung"

See also

* “Specifying a language for Studio” on page 44

[q GuiDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Export workflow step names as string resources for translation

About this task

If you have more than a few workflow step names to translate, you can export them, translate them in the exported
file, and then import them.

Procedure

1. Export the PolicyCenter string resources for a particular locale by using the following command in the
installation directory:

gwb exportLocalizations
-Dexport.file=targetFile
-Dexport.language=LanguageCode

In the command, you must provide a target file name and specify the language code to use to identify the files
from which to export the string resources.
2. In the exported file, find the workflow by display key name.

For example, in PolicyCenter, find Workflow.ProcessMVRsWF and keep searching until you see an entry that
ends in .Step. An example is Workflow.ProcessMVRsWF.1.BeforeOrder.Step.

The display key names for workflow items might contain a box character between the workflow name and the
version number. A box character represents a character that your system is not configured to display, in this
case the character one dot leader, UTF-16 hexadecimal code 0x2024. The previous example represents that
character as a period.

3. Find each <StepLocalization> element for the language you want to translate.
4. Translate each workflow step name into the target language.

5. Import the translated strings resources back into PolicyCenter by using the following command syntax:

gwb importLocalizations
-Dimport.file=sourcefFile
-Dimport.language=LanguageCode

In the command, you must provide a source file name and specify the language code to use in the file name
that the command saves in the localization folder.

See also

» “Exporting and importing string resources” on page 32

* “Localizing display keys” on page 35

Creating a language-specific workflow subflow

You can use subflows to implement simple parallelism in internal workflows, which is otherwise impossible because
a single workflow instance cannot be in two steps simultaneously. One use of a subflow is to make it language
specific.

Methods that create a language-specific subflow

You can create a child workflow, or subflow, in Gosu by using the following methods on Workflow. Each method
handles the language of the subflow differently.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Method Description

createSubFlow Creates a child subflow synchronously. PolicyCenter starts the subflow immediately upon
method invocation. The new subflow automatically uses the default application language,
not the language of the parent workflow. Thus, if you set the language of the parent work-
flow to be different from the default application language, the subflow does not inherit that
language.

createSubFlowAsynchronously Creates a child subflow that PolicyCenter starts only after executing all code in the Gosu
initialization block. The subflow uses the default application language, not the language set
for the workflow itself.
Because PolicyCenter executes all the Gosu code in the block before starting the subflow, it
is possible to set the language of the subflow before the workflow starts.

instantiateSubFlow Creates a child subflow, but does not start it. You can modify the subflow that the method
returns before you start the subflow.

Create a child subflow

About this task

You can create a child subflow that inherits the language of the parent workflow. This example uses the Workflow
method instantiateSubflow. There are other methods you can use, as described in “Methods that create a
language-specific subflow” on page 55.

Procedure

1. Define a workflow that has the LanguageType property.

See the Configuration Guide for information on how to create a new workflow with a LanguageType property.
Set the language for this subflow so that it uses your preferred language.

Instantiate the subflow by using the instantiateSubFlow method rather than the createSubFlow method.

Set the LanguageType property on the instantiated subflow to the language of the parent workflow.

o >N

Start the subflow by using one of the workflow start methods described in the Configuration Guide topic on
instantiating a workflow.

See also

* Configuration Guide

Localize Gosu code in a workflow step

About this task

It is possible to localize the language used for Gosu code that you add to any workflow step, such as in an Enter
Script block.

Note: Besides runAsCurrentLanguage, other LocaleUtil wrapper methods useful for localization
include runAsCurrentLocale and runAsCurrentLocaleAndLanguage.

Procedure
1. Wrap the Gosu code in the following method:

gw.api.util.LocaleUtil.runAsCurrentLanguage(
alternatelanguage, \ -> { code })

2. Set the value of alternateLanguage to the language to use for the Gosu code block.

For example:

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

gw.api.util.LocaleUtil.runAsCurrentLanguage(
gw.il8n.ILocale.LANGUAGE_FR_FR, \ -> { code })
See also

» “Setting a language for a block of Gosu code” on page 45

» “Setting regional formats for a block of Gosu code” on page 75

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

chapter 9

Localizing templates

In the base configuration, Guidewire provides a number of template-related definition files for notes, emails, and
documents. In Guidewire Studio™, you can navigate in the Project window to the following folders containing these

files:

* configuration— config—resources—doctemplates

* configuration— config—resources—emailtemplates

* configuration— config—resources—notetemplates

Each folder contains two files for each resource type, the template file and a descriptor file. The two files have the
same names but different file extensions. PolicyCenter uses the files to define a document, an email, or a note. The
following table describes these files.

File extension Description Example
.rtf Template files of various types. Template files CreateEmailSent.gosu.htm
.htm contain the actual content of the document,
.pdf email, or note.
.xml
.x1s
.descriptor Template descriptor file in XML format. This file ~ CreateEmailSent.gosu.htm.descriptor
contains the template metadata, such as:
* name
e subject
This file can also contain symbol definitions for
context objects that PolicyCenter substitutes into
the template content file in creating the final
document.
See also

For general information on templates and how to create them and use them, see:

* Gosu Reference Guide

o Integration Guide

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Creating localized documents, emails, and notes

Creating localized versions of document, email, and note templates mainly involves:
* Creating language-specific folders in the correct location in Guidewire Studio™.

* Populating each folder with translated versions of the required document, email, or note templates and descriptor
files.

Notes:
* In PolicyCenter, the default locale for a document, note, or email template is the configured default locale for the
application.

* Any time you add a file to a Studio-managed file folder, you must stop and restart Studio so that it recognizes the
change.

* Guidewire does not provide the ability to localize Velocity templates.
To create localized version of document, email, and note templates, use the following multi-step process.
1. “Create language-specific folders” on page 60
2. “Copy template content files” on page 61
3. “Localizing template descriptor files” on page 61
4. “Localize template files” on page 63
5

“Localizing documents, emails, and notes in PolicyCenter” on page 64

Create language-specific folders

About this task

In Guidewire Studio™ for PolicyCenter, you can see the locations of the unlocalized PolicyCenter document, email,
and note templates by navigating in the Project window to the following folders:

* configuration—config—resources—doctemplates

* configuration— config—resources—emailtemplates

* configuration—config—resources—notetemplates

You can create your own localized versions of the template files.

Procedure

1. Open Guidewire Studio™ and navigate in the Project window to the following folder:
configuration— config—resources—doctemplates

2. Right-click the doctemplates folder and choose New—Package.

3. Enter the name of your language-specific folder and click OK.
For example, if want to use French-language document templates, enter fr_FR for the name.

4. Ifyou also want to localize the email and note templates, repeat the previous steps for the following folders:
* configuration—config—resources—emailtemplates

* configuration—config—resources—notetemplates

Result

After you complete this task, you see the language-specific folders in the Project window, along with all the non-
localized templates.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Example

For example:
* configuration— config—resources—doctemplates—fr_FR
* configuration— config—resources—emailtemplates—fr_FR

* configuration— config—resources—notetemplates—fr_FR

Next steps

The next step is “Copy template content files” on page 61.

Copy template content files

Before you begin

Complete the step “Create language-specific folders” on page 60 before you perform this step.

About this task

After you set up the template language folders, copy the template files from the main directory into the language
subfolders.

Procedure

1. For documents, you copy only the template content files, not the descriptor files.
For example, you might copy the following files from doctemplates to doctemplates/fr_FR:
CreateEmailSent.gosu.htm
PolicyQuote.gosu.rtf
2. For email and notes, you copy both the template content files and the template descriptor files.
For example, you might copy the following files from emailtemplates to emailtemplates/fr_FR:
NeedXYZ.gosu
NeedXYZ.gosu.descriptor
GotXYZForPolicy.gosu
GotXYZForPolicy.gosu.descriptor
ActivityActionPlan.gosu

ActivityActionPlan.gosu.descriptor

Next steps

The next step is “Localizing template descriptor files” on page 61.

Localizing template descriptor files

Complete the step “Copy template content files” on page 61 before you perform this step.

After you copy the template files to a template locale folder, you create localized versions of the template descriptor
files.

It is important to understand that localizing template descriptor files serves a different purpose from that of
translating template content files. For example:

* Localizing the subject context object in an email template descriptor file enables a PolicyCenter user to see the
subject line of that email template in the localized language in PolicyCenter.

* Localizing the content of an email template enables the recipient of that email to see its contents in the localized
language.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

The manner in which you create localized document template descriptor files is different from the process for
creating localized email and note template descriptor files. See the following topics for details:

* “Localizing document descriptor files” on page 62
* “Localizing email and note descriptor files” on page 63

You can continue for more localization descriptor file information or you can move to the next step “Localize
template files” on page 63.

Localizing document descriptor files

The document template descriptor files remain in the main doctemplates folder, and you edit them there. Descriptor
files are XML-based files that conform to the specification defined in file document-template.xsd. To view
document template descriptor files in Guidewire Studio for PolicyCenter, navigate in the Studio Product window to
the following location:

configuration—config—resources—doctemplates

The descriptor file defines context objects, among other items. Context objects are values that PolicyCenter inserts
into the document template to replace defined symbols. For example, PolicyCenter replaces <%=Subject%> in the
document template with the value defined for the symbol Subject in the descriptor file.

Example

For example, in the base configuration, PolicyCenter provides an XML definition for the AccountEmailSent
template descriptor associated with the AccountEmailSent document content template. The descriptor file defines a
context object for the Subject symbol. You can define as many context objects and associated symbols as you need.
You can add elements that localize the template for any languages supported by your system.

<?xml version="1.0" encoding="UTF-8"?>

<DocumentTemplateDescriptor

id="EmailSent.gosu.htm"
description="Record of an email being sent"

keywords="CA, email">

<DescriptorLocalization language="languageCode" name="localizedName"
description="1localizedDescription" />

<ContextObject name="Subject" type="string">
<DefaultObjectValue></DefaultObjectValue>
<ContextObjectLocalization language="languageCode" display-name="localizedName" />

</ContextObject>

</DocumentTemplateDescriptor>

XML elements to localize

Localizing a template descriptor file requires that you localize a number of items in the file. The following list
describes some of the main items that you can localize in a descriptor file.

Element Attribute Description

<DocumentTemplateDescriptor> e keywords Localize the keywords associated with this template to facilitate the
search for this template in the PolicyCenter search screen.

<DescriptorLocalization> e language Subelement of <DocumentTemplateDescriptor> — Enter a valid

* name GWLanguage value for language, such as
gw.i18n.ILocale.LANGUAGE_EN_US, which uses the language type-
code en_US. The language typecode must be defined in the
LanguageType typelist. See also, “Setting regional formats for a block of
Gosu code” on page 75.

e description

[q GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Element Attribute Description

You can also localize the name and description of this template as it ap-
pears in PolicyCenter.

<ContextObjectLocalization> e language Subelement of <ContextObject> — Enter a valid GWLanguage value for
e display-name language. See the previous description for more information.
You can also localize the name of this template as it appears
PolicyCenter.

To localize a document template descriptor file, add the appropriate <DescriptorLocalization> and
<ContextObjectLocalization> subelements to the file.

IMPORTANT There is only one copy of each document template descriptor file. Do not create
additional copies in locale folders. Instead, add localization elements to the descriptor files in the
doctemplates folder.

Localizing email and note descriptor files

To localize email and note descriptor files:
1. Place a copy of each descriptor file in the correct language folder.

2. Translate the following attributes in that file.

Element Attribute Description

<emailtemplate- ¢ keywords Translate the keywords associated with this template to facili-
descriptor> e subject tate the search for this template in the PolicyCenter search
<notetemplate- screen. Also, translate the subject of this template to show that
descriptor> value in PolicyCenter.

For example, to localize an email or note template descriptor file for French (France):
1. First, copy the descriptor file to a fr_FR folder.
2. Then, provide any translated keywords that you want and the translated subject tag for the template.

Localize template files

Before you begin

Complete the step “Localizing template descriptor files” on page 61 before you perform this step.

About this task

After copying the template content files to your language folder, as described in “Copy template content files” on
page 61, you then need to translate them. Unless you want to create a new template, the simplest procedure is to
work with a clone of an existing template file.

Procedure

1. Open the copied base language content template.
2. Translate it into the language of your choice.

3. Save the translated file in the language-specific configuration folder.

Next steps

The next step is “Localizing documents, emails, and notes in PolicyCenter” on page 64.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Localizing documents, emails, and notes in PolicyCenter

Complete the step “Localize template files” on page 63 before you perform this step.

After you create localized versions of your templates, you can then use these templates in PolicyCenter to create a
language-specific version of a document, an email, or a note.

Note: In PolicyCenter, you can select the unlocalized templates that are in the default directory.
PolicyCenter displays these templates if no language is specified. If you select one, however,
PolicyCenter makes the Language ficld in the New Document worksheet editable.

Create a localized document

Procedure
1. In PolicyCenter, open a policy and navigate to Actions—New Document— Create a new document from a
template.
This action opens the New Document worksheet at the bottom of the screen.
2. In the New Document worksheet, click the Search icon (magnifying glass) in the Document Template field.

The base configuration Sample Acrobat document (SampleAcrobat.pdf) uses Helvetica font. If you want to
create a document that uses Unicode characters, such as one that uses an East Asian language, then the
document template must support a Unicode font. Otherwise, the document does not display Unicode
characters correctly.

3. In the search screen that opens, set the Language field to your language and set the other search fields as
needed. If a document template for your language exists, PolicyCenter displays it in Search Results.

4. Click Select. PolicyCenter returns to the New Document worksheet with the selected localized template.

5. Complete the rest of the worksheet fields as necessary. You can enter text in your chosen language in the
appropriate fields to further localize the document.

Create a localized email

Procedure
1. In PolicyCenter, open a policy and choose Actions—New Email to open the New Email worksheet at the bottom
of the screen.

2. In the Email worksheet, you can either enter text in your chosen language or click Use Template to open the
template selection worksheet.

3. Ifyou click Use Template:

a. In the search screen that opens, set the Language field to your chosen language and set the other search
fields as necessary. If an email template for the language exists, PolicyCenter displays it in Search Results.

b. Click Select. PolicyCenter returns to the New Email worksheet with the selected localized template.

4. Complete the rest of the worksheet fields as needed. You can enter text in your chosen language in appropriate
fields to further localize the document.

Create a localized note

Procedure
1. In PolicyCenter, open a policy and choose Actions—New Note to open the New Note worksheet at the bottom
of the screen.
2. Ifyou click Use Template:

a. In the search screen that opens, set the Language field to your chosen language and set the other search
fields as necessary. If an email template for the language exists, PolicyCenter displays it in Search Results.

b. Click Select. PolicyCenter returns to the New Note worksheet with the selected localized template.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

3. Complete the rest of the worksheet fields as needed. You can enter text in your chosen language in appropriate
fields to further localize the document.

Document localization support

PolicyCenter provides a number of useful methods for working with document localization in the following APIs.
You can use methods of classes that implement these interfaces to search for document templates and generate
documents by using a specific language:

» IDocumentTemplateDescriptor interface
* IDocumentTemplateSource plugin interface

* IDocumentTemplateSerializer plugin interface

See also

* For information on these plugins, document management, and writing and installing document templates, see the
Integration Guide.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

chapter 10

Working with regional formats

You can configure support for multiple regional formats in PolicyCenter. Regional formats specify how to format
items like dates, times, numbers, and monetary amounts for use in the user interface. Regional formats specify the
visual format of data, not the database representation of that data.

Using regional formats

In PolicyCenter, you can either use the regional formats defined in the International Components for Unicode (ICU)
Library, or you can override those formats by defining formats in localization_localeCode.xml files. You save
these files in the Localizations folder. If there is no localization_LocaleCode.xml file for a region, PolicyCenter
uses the ICU Library. You configure these formatting options in Guidewire Studio™.

Configuring regional formats

Overview of the International Components for Unicode (ICU) library

The International Components for Unicode (ICU) library is an open source project that provides support for Unicode
and software globalization. PolicyCenter includes this library in the base configuration.

The ICU library, icu4j, attempts to maintain API compatibility with the standard Java JDK. However, for most
features, the ICU library provides significant performance improvements and a richer feature set than the Java JDK.
The core of the ICU library is the Common Locale Data Repository (CLDR). The CLDR repository is a
comprehensive repository of locale data.

See also

* For a feature comparison between the ICU library and the Java JDK, see http://site.icu-project.org/.

» For comparisons of text collation performance, see http://site.icu-project.org/charts/collation-
icudj-sun.

* For more information about the CLDR, see http://cldr.unicode.org/.

http://site.icu-project.org/
http://site.icu-project.org/charts/collation-icu4j-sun
http://site.icu-project.org/charts/collation-icu4j-sun
http://cldr.unicode.org/

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Locale codes, localization_localeCode.xml, and the ICU library

The Localizations folder does not have to contain any localization_LlocaleCode.xml files. If you do add such a
file, you can define only locale settings that override the ICU library defaults. For any locale settings that you have
not defined, PolicyCenter uses the ICU library defaults, as follows:

* PolicyCenter uses the ICU library for regional formats for dates, times, numbers, and monetary amounts.

* PolicyCenter uses the ICU library for the Japanese Imperial Calendar.

See also

* “Overview of the International Components for Unicode (ICU) library” on page 67

Java locale codes and the ICU library

The ICU library uses Java locale codes to identify specific regional settings. For PolicyCenter to be able to access
the ICU library for a region, the locale code for that region must be defined in the LocaleType typelist. In the base

configuration, PolicyCenter provides the following set of Java locale codes in the LocaleType typelist:
en_US United States (English)
en_GB Great Britain (English)
en_CA Canada (English)
en_AU Australia (English)
fr_CA Canada (French)
fr_FR France (French)
de_DE Germany (German)
ja_3JP Japan (Japanese)
The Java locale codes defined in this typelist are used by PolicyCenter as follows:

* To define the locale codes that you can use to set the default application locale, as described in “Setting the
default application locale for regional formats” on page 73

* To access the regional formats for a locale supplied by the ICU library, as described in “Overview of the
International Components for Unicode (ICU) library” on page 67

Add a locale code to the LocaleType typelist

About this task

You can add additional Java locale codes to the LocaleType typelist.

Procedure

1. Open Guidewire Studio for PolicyCenter.

2. In the Project window, navigate to the following location and right-click LocaleType.tti:
configuration—config —Metadata— Typelist

3. Choose New— Typelist extension to create the file LocaleType.ttx.

+ If you see a Typelist Extension dialog enabling you to choose one of several LocaleType.ttx locations,
choose the one in configuration/config/extensions/typelist/ and then click OK.

+ If you see a message saying that typelist extension is not allowed, then the file LocalType.ttx already
exists. Open that file instead.

4. In the editor for LocaleType.ttx, right-click the top element on the left, typelistextension LocaleType, and
choose Add new—typecode.

5. For code, enter the Java locale code.
For example, enter the Java locale code n1_NL to configure regional formats used in the Netherlands.
6. For name and description, by convention, specify the country followed by the language in parentheses.

For example, enter Netherlands (Dutch) for both the name and the description.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Configuring a localization_localeCode.xml file

Guidewire uses localization_LocaleCode.xml files to define regional formats. To view these files, open
Guidewire Studio for PolicyCenter and navigate to the following location in the Studio Project window:

configuration— config— Localizations
These localization files have Java locale code suffixes, such as localization_fr_FR.xml.
Guidewire provides the following localization files in the base configuration:
e localization_en_US.xml
e localization_fr_FR.xml
* localization_ja_JP.xml
These localization files define the regional formats that are customary to each region. For example:

* The localization_en_US.xml file contains configuration information on date, time, number, and currency
formats for use in the United States.

* The localization_ja_JP.xml file contains configuration information on how to format address information for
Japan. It also contains configuration information on the Japanese Imperial Calendar in use in Japan.

Note: In the base configuration, Guidewire uses the ICU library defaults for certain regions, such as
de_DE. For those regions, there is no localization_LlocaleCode.xml file. See “Overview of the
International Components for Unicode (ICU) library” on page 67.

You can add a new localization file to the Studio Localizations folder. If there are multiple copies of a localization
file, then the files in the main configuration module override any other localization files.

You can use an existing localization_LlocaleCode.xml file as a starting point if you want to create a new

localization_LlocaleCode.xml file to override the ICU library settings for a region. You define attributes and
subelements of the <GWLocale> element.

See also

» “<GWLocale> XML element of a localization file” on page 69

<GWLocale> XML element of a localization file

A localization_LlocaleCode.xml file contains a single <GWLocale> element in which you define the settings for a
region. If you do not define an element or attribute, PolicyCenter uses the ICU library setting. The <GWLocale>
element can take the following attributes and subelements.

<GWLocale> Attributes

The <GWLocale> element can take the following attributes.

code The region identifier, typically the same as the Java locale code defined in LocaleType. For
example, "en_US".

name A String value for the name of the locale, which the application can display to the user in its
screens. For example, "United States (English)".

firstDayOflWeek Defines the first day of the week for the region. Value is an integer representing a day of the week,
starting with "1" for Sunday, "2" for Monday, and so on.
If not defined, the base configuration uses the following default ICU library settings for the region:
e Sunday —en_AU, en_CA, en_US, fr_CA, ja_JP
¢ Monday — de_DE, en_GB, fr_FR

typecode The corresponding regional typecode defined in the LocaleType typelist. For example, "en_US".

defaultCalendar "Gregorian" or "JapaneseImperial”. The default value is "Gregorian".

enableJapaneseCalendar A Boolean value, true or false, that determines whether or not to enable the Japanese calendar
for this region.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

<GWLocale> Subelements

CurrencyFormat

Currency format pattern for the region, used in single currency display mode.

negativePattern, Define how PolicyCenter displays positive and negative monetary amounts. PolicyCenter displays and
positivePattern formats the numeric value in place of the pound sign (#) in the pattern. PolicyCenter displays all
other characters in the pattern as they are without modification.
For example, the positive pattern $# displays the numeric value 32 as $32.00. The negative pattern
($#) displays the numeric value -5 as ($5.00).

zeroValue Defines how PolicyCenter displays zero amounts. For example, the zero value pattern can be o (zero)
or - (dash). If the numeric value of a monetary amount is null, PolicyCenter displays the amount as
empty or blank. The monetary amount must be 0.00 for the zero value pattern to be used.

DateFormat

Patterns for the date formatter and parser.

long The long date format pattern. For example, "E, MMM d, yyyy".

medium The medium date format pattern. For example, "MMM d, yyyy".

short The short date format pattern. For example, "MM/dd/yyyy".

JapaneseImperialDateFormat

Japanese imperial calendar settings.

long Long Japanese imperial date format.
medium Medium Japanese imperial date format.
short Short Japanese imperial date format.

yearSymbol Japanese year symbol.

NumberFormat

Number formatter and parser configurations. Determines how PolicyCenter displays numbers.

decimalSymbol Symbol used to separate a whole number from its decimal fraction, usually a period or a comma.
For example, ".".

negativeEntryPattern Format for entering negative numeric values. For example, " (#)".

thousandsSymbol Symbol used to separate groups of three digits to the left of the decimal mark, usually a period or
a comma. For example, ",".

TimeFormat

Time formatter and parser configuration.

long Long time format pattern. For example, "h:mm:ss a z".

medium Medium time format pattern. For example, "hh:mm:ss a".

short Short time format pattern. For example, "h:mm a".

NameFormat
Formatting of names by the PCF file GlobalContactNameInputSet or GlobalPersonNameInputSet.

[q GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

PCFMode Mode of the PCF file to use. The mode must exist. In the base configuration, there are two modes,
default and Japan. The default value in the base configuration is default.

textFormatMode How to format the text. In the base configuration, Japan and France are possible values.

visibleFields Fields the user can see in the PCF file GlobalContactNameInputSet or GlobalPersonNameInputSet. For
example, for France, the visible fields are
"Prefix,FirstName,MiddleName,Particle,LastName,Suffix,Name".

CalendarWidget

Defines the year-month pattern used by the calendar widget.

yearMonth For example, for ja_JP, the value is "yyyyM™".

<DateFormat> and <TimeFormat> elements of a localization file

You can specify any of the following attribute values for the DateFormat and TimeFormat elements:
* short
* medium
* long
For example (for the en_US locale):
<DateFormat short="MM/dd/yyyy"
medium="MMM d, yyyy"
long="E, MMM d, yyyy" />
<TimeFormat short="hh:mm aa"

medium="hh:mm aa"
long="hh:mm aa"/>

In general, you can use any of the date and time patterns supported by the Java class SimpleDateFormat for the
medium and long formats. However, Guidewire maps the short format to the date picker widget, which does not
support arbitrary date formats. For a description of these patterns, refer to the following web sites:

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
http://cldr.unicode.org/translation/date-time-1/date-time-patterns

PolicyCenter uses the short form to recognize dates entered by the user. It uses the other forms to display dates and
times.

Using the Short format

Define patterns for the short date and time definitions that result only in a fixed-length output that matches the
pattern length.

Note: Time and date inputs in PCF files do not accept variable length format patterns, such as MMM.
Therefore, for these fields, use only format patterns that result in fixed-length output. If you do use a
variable-length input pattern, it is coerced during input into the short form.

In general, dates have three components, year, month, and day, each defined by a specific pattern. Each pattern
provides a fixed-width output. For example, the following patterns all provide a fixed-width output. In this case,
each output contains the same number of characters as the format pattern.

Format Pattern Output

year yyyy 4 digit output, fixed

month MM 2 digit output, fixed

day dd 2 digit output, fixed

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
http://cldr.unicode.org/translation/date-time-1/date-time-patterns

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

A pattern that does not work

The following list describes an incorrect, non-fixed-width pattern:

Format Pattern Output

year yyyy 4 digit output, fixed

month MMM variable length output

day dd 2 digit output, fixed

The pattern MMM does not work as there are languages in which the abbreviated month string is not three characters in
length. Attempting to use this pattern with a language in which there are abbreviated month strings that are not three
characters in length can cause a validation error.

chapter 11

Setting the default application locale
for regional formats

The default application locale determines the regional formats for users who have not chosen a personal preference.
You must set a value for the default application locale, even if you configure PolicyCenter with a single region as
the choice for regional formats.

You set the default application locale in configuration file config.xml. In this file, set configuration parameter
DefaultApplicationLocale to the appropriate value for your installation. In the base configuration, Guidewire sets
the default application locale to en_US.

IMPORTANT The value for DefaultApplicationLocale must match a typecode in the LocaleType
typelist. If you set the value of parameter DefaultApplicationLocale to a value that does not exist
as a LocaleType typecode, then the application server does not start.

Example

The following example sets the default application locale to France (French).
<param name="DefaultApplicationLocale" value="fr_FR" />

This action sets the default choice for regional formats in Guidewire PolicyCenter.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

chapter 12

Setting regional formats for a block of
Gosu code

The class gw.api.util.LocaleUtil provides the following methods to enable you to run a block of Gosu code
with a specific set of regional formats:

gw.api.util.LocaleUtil.runAsCurrentLocale(alternateLocale, \ -> { GosuCode })

gw.api.util.LocaleUtil.runAsCurrentLocaleAndLanguage(
alternatelocale,
alternatelanguage,
\ -> { code })

The second method sets both region and language at the same time.

Running a block of Gosu code in this way enables PolicyCenter to format dates, times, numbers, and names of
people appropriately for a specific region. Otherwise, the block of Gosu code uses the regional formats specified by
the current region. The current region is either specified by the current user or, if not, by the
DefaultApplicationLocale parameter in config.xml.

The parameters that the methods can take are:

Parameter Description

alternateLocale An object of type ILocale that represents a regional format from the LocaleType typelist. Specify a
GWLocale object for this parameter.

alternateLanguage An object of type ILocale that represents a language from the LanguageType typelist. Specify a
GWLanguage object for this parameter.

\ -> { code } A Gosu block as a GWRunnable object—the Gosu code to run with different regional formats or a differ-
ent language

Obtaining an ILocale object for a locale type

To run a block of Gosu code with a specified set of regional formats, you must specify a locale object of type
ILocale. You must specify the subtype GWLocale or GWLanguage as appropriate for the parameter
alternatelocale or alternatelLanguage.

* For the parameter alternatelLocale, use the gw.api.util.LocaleUtil.toLocale method to provide an
ILocale object that corresponds to a Gosu typecode in the LocaleType typelist. The object is actually of type

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

GWLocale, which implements ILocale. You can specify the object directly by using typecode syntax. For
example LocaleType.TC_EN_US. The typecode has to be defined in the LocaleType typelist.

* For the parameter alternatelLanguage, use the gw.api.util.LocaleUtil.toLanguage method to provide an
ILocale object that corresponds to a Gosu typecode in the LanguageType typelist. The object is actually of type
GWLanguage, which implements ILocale. You can specify the object directly by using typecode syntax. For
example LanguageType.TC_EN_US. The typecode has to be defined in the LanguageType typelist.

* You can specify a typecode of the correct type directly, without using the toLocale or toLanguage method. Use
the following syntax:

°© GWLocale —gw.il1l8n.ILocale.FR_FR
° GWLanguage —gw.il8n.ILocale.LANGUAGE_FR_FR

* You can specify the first parameter by using a method on LocaleUtil that can get the current or default locale or
language, as appropriate. For example, getDefaultLocale or getDefaultLanguage.

You can add a typecode to the LocaleType or LanguageType typelist. If you add a new typecode to one of these
typelists, you must restart Guidewire Studio™ to be able to use it in gw.i18n.ILocale.

Example

The following example Gosu code formats today’s date by using the default application regional formats, overriding
the any region that the user might have specified. The code uses runAsCurrentLocale to run a block of code that
prints today’s date formatted according the default application region’s date format. The first parameter to this
method is a call to getDefaultLocale to obtain a GWLocale object that represents the application’s default regional
formats.

uses gw.api.util.LocaleUtil
uses gw.api.util.DateUtil

// Run a block of Gosu code that prints the current date
// in the application’s default regional format
LocaleUtil.runAsCurrentLocale(getDefaultLocale(),

\-> {print(DateUtil.currentDate().format("long"))}
)

See also

* “Add a locale code to the LocaleType typelist” on page 68
» “Setting a language for a block of Gosu code” on page 45

* Information on Gosu blocks in the Gosu Reference Guide.

chapter 13

Configuring name information

Name formats shown in PolicyCenter can vary by region. For example, for Person contact types, as opposed to
Company types, a contact detail view can show the following name fields:

 United States — Prefix, First Name, Last Name, Suffix

* France — Prefix, First Name, Particle, Last Name, Suffix

* Japan — Last Name (phonetic), First Name (phonetic), Last Name, First Name
Note: For Japanese names, the labels shown on the screen map to the following columns:
o Last Name (phonetic) maps to LastName.
o First Name (phonetic) maps to FirstName.
o Last Name maps to LastNameKanji.
° First Name maps to FirstNameKanji.

You can customize this feature, as described in this topic.

Note: ContactManager supports configuration of names for globalization with features that are similar
to those of PolicyCenter. Information for ContactManager name configuration is included in this topic
where it differs from PolicyCenter name configuration.

Names in PolicyCenter

In PolicyCenter, a name is part of contact information, such as a policy or account owner. PolicyCenter provides
modal PCF files that support name formats that vary by region.

Read-only and editable name information

PolicyCenter can display name information as read-only text or as editable text entry fields:

* PolicyCenter displays a read-only name as a display name on a single line. PolicyCenter uses the
localization_LlocaleCode.xml file for the current region and the NameFormatter class to determine which
name fields to use.

* PolicyCenter displays editable names as a set of editable text fields in which you can add, modify, or delete
information. PolicyCenter uses the localization_LlocaleCode.xml file and the current region to determine the
name fields to show.

See also

* “Configuring name data and fields for a region” on page 78

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Name owners

PolicyCenter uses a NameOwner object to control the display and editing of names. The NameOwner object identifies
the object that contains a particular name. The NameOwner determines how read-only values are formatted. For
editable names, the NameOwner determines which PCF mode to use and which fields to show. You can define
different name owners depending on your requirements.

See also

* “Modal PCF files and name configuration” on page 82

Modal name PCF files

The current region determines which name fields in the database are visible in the PolicyCenter user interface for a
name. The PCF files GlobalContactNameInputSet and GlobalPersonNameInputSet have modal versions that
make different sets of name fields visible based on the current region. These PCF files also control the order in
which PolicyCenter displays name fields.

A single mode of these PCF files can be shared between multiple regions. You can add new fields to the existing
PCF files. If you need a different set or order of name fields to display for a region, you can add a new modal PCF
file for the region. You can use a copy of one of the existing modal PCF files as a starting point for the new file.

To determine which modal PCF file is used for a region, you set the PCFMode attribute in the
localization_LlocaleCode.xml file for that region.

See also

* “PCFMode attribute of the NameFormat element” on page 79.

* For more information on GlobalContactNameInputSet and GlobalPersonNameInputSet, see “Modal PCF files
and name configuration” on page 82.

* For general information on modal PCF files, see the Configuration Guide.

Configuring name data and fields for a region

You use region-specific localization_LocaleCode.xml files to configure the data that PolicyCenter uses to
display names for specific regions.

Note: For read-only name display, the order is determined by code in the NameFormatter class. For
editable name fields, the order is determined by the order of the fields in the PCF mode for the region.

If you add a new name format for a region or you add a new Contact (or ABContact) name property, you must also
configure the files that support read-only names. See “Setting up additional region and name configurations” on
page 80.

Configuring the Localization XML file for names

PolicyCenter stores localization_LlocaleCode.xml files in the Localizations folder, which you can access in
Guidewire Studio™ in the Project window at configuration—config— Localizations. For example, the file for Japan is
localization_jp_JP.xml.

File localization_LocaleCode.xml defines a NameFormat element that contains the following useful attributes:

Attribute Description More information

PCFMode Specifies the mode of the appropriate PCF name “PCFMode attribute of the NameFormat ele-
file to use ment” on page 79

textFormatMode Specifies the region that class NameFormatter “Text format mode attribute of the NameFormat

uses to format a read-only name. element” on page 79

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Attribute Description More information

visibleFields Specifies which name fields to display “Visible fields attribute of the NameFormat ele-
ment” on page 79

PCFMode attribute of the NameFormat element

Attribute PCFMode, on the NameFormat element in file localization_LocaleCode.xml, determines which modal
version of the name input PCF files PolicyCenter uses for specific countries. The name input PCF files are
GlobalContactNameInputSet and GlobalPersonNameInputSet.

For example, for Japan, localzation_jp_JP.xml file specifies the PCF mode as follows:

<NameFormat PCFMode="3Japan" .../>
If the user chooses Japan as the region, PolicyCenter uses one of the following PCF files as appropriate to display
name information:

* GlobalContactNameInputSet.Japan

* GlobalPersonNameInputSet.Japan

If a localization_LlocaleCode.xml file does not define the PCFMode attribute, or there is no
localization_LlocaleCode.xml file for a region, PolicyCenter uses the default modal version of the name PCF
file. In the base configuration, the default version is suitable for many countries.

Class NameLocaleSettings defines the valid values that you can use for PCFMode. If you want to add a PCF mode,
you must define it in the NameLocaleSettings class. The default base configuration definition is:

private static final var validPCFModes : Set<String> = { "default", "Japan", "", null }

See also

* “Modal PCF files and name configuration” on page 82

Text format mode attribute of the NameFormat element

Attribute textFormatMode, on element NameFormat in file localization_LocaleCode.xml, specifies the region
name that the NameFormatter class uses to format a read-only name. Method internalFormat pm the
NameFormatter class defines the region names. The default value of the textFormatMode attribute is default.

Class NameLocaleSettings defines the value values that you can use for the textFormatMode attribute. If you want
to add a text format mode, you must define it in this class. The default base configuration definition is:

private static final var validTextFormatModes : Set<String> =
{ "default", "France", "Japan", "", null }

See also

* “NameFormatter class” on page 83

Visible fields attribute of the NameFormat element

Attribute visibleFields, on element NameFormat in file localization_LocaleCode.xml, defines the set of name
fields that can be visible for each region. For example:

France visibleFields="Prefix,FirstName,MiddleName,Particle,LastName,Suffix,Name"

Japan visibleFields="LastName,FirstName,LastNameKanji,FirstNameKanji,Name,NameKanji"

The field order and the actual fields that can be shown are specified in the PCF files or the NameFormatter class.
The order of the fields defined in visibleFields does not matter, and listing a field in this attribute simply enables
it to be shown if it is specified.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

The fields listed in this attribute must be defined in the class NameOwnerFieldId. By convention, the names used in
visibleFields match field names defined in Contact or a subentity of Contact. In ContactManager, the names
match field names defined in ABContact or a subentity of ABContact. Names are case-sensitive. If the values are not
valid, you get error messages in the log when the data is first used. The error messages are defined in
gw.api.name.NameLocaleSettings.init.

If a localization_LlocaleCode.xml file does define a visibleFields attribute, PolicyCenter uses the entire set of
name fields defined in the PCF file.

See also

» “NameOwnerFieldld class” on page 85

Setting up additional region and name configurations

You can add a new name format for a region, and you can extend Contact or a Contact subtype with a new name
column. These changes require that you update various files and classes.

Note: If you have ContactManager installed, you must also make corresponding changes in
ContactManager.

Add a name format for a region

About this task

You can add an additional name format for a region.

Procedure

1. Configure a localization_LlocaleCode.xml file.
See “Configuring the Localization XML file for names” on page 78.

2. Define modal name input PCF files that list the input fields if the current files do not have that sequence of
fields.

See “Modal PCF files and name configuration” on page 82.

3. Add anew if statement to the NameFormatter.internalFormat method to handle the formatting of the name
string for the new region.

See “NameFormatter class” on page §3.

Extend the Contact entity with a new name column

About this task
If you extend the Contact entity or a subtype of Contact to add a new name column, you must make the following
changes in PolicyCenter.

Note: In ContactManager, you would be extending the ABContact entity or a subtype of ABContact to
add a new name column

Procedure
1. Add the new field to the Contact or the Contact subtype and ensure that the integration files are correctly set
up.
See the Guidewire Contact Management Guide.
2. Update the class NameOwnerFieldID to add the new field.
a. Add a variable for the new column to this class.

b. Add the variable as needed to any of the following existing constants that list name fields in this class:

ALL_PCF_FIELDS
ALL_CONTACT_PCF_FIELDS

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

REQUIRED_NAME_FIELDS
DISPLAY_NAME_FIELDS
FIRST_LAST_FIELDS
HIDDEN_FOR_SEARCH

See “NameOwnerFieldld class” on page 85.
3. Add the new field to one of the following interfaces:
* For a non-person contact, add the field to ContactNameFields.
* For a person contact, add the field to PersonNameFields.
4. Compile the project to see which name delegate classes you need to update.

For name delegates that take their values from a contact or person, you will see error messages identifying
those classes.

* You will need to add the field to either ContactNameDelegate or PersonNameDelegate, depending on
whether you added it to ContactNameFields or PersonNameFields. In ContactManager, these classes are
ABContactNameDelegate and ABPersonNameDelegate.

* For the remaining name delegates, decide if the new name column needs to be added to the underlying
entity.

* There are several non-persistent entities used for searching. If the new column will not be used for
searching, create a getter for the field that returns null and a setter for the field that throws an exception.
For example, Midd1leName is not a search column in the base configuration. For an example, see the
implementation of MiddleName in gw.api.name.PLContactSearchNameDelegate.

« For persistent entities, you can add a new column to match the column you added to the Contact or
Contact subtype. Then you create a getter and setter for the field in the associated name delegate. If you do
not add the column to the persistent entity, create a getter for the field that returns null and a setter for the
field that throws an exception.

5. If necessary, add a localization_localeCode.xml file for the region and then add the new field to it. Also,
update the existing localization_LlocaleCode.xml files with the field. See “Configuring the Localization
XML file for names” on page 78.

6. Add the field to the appropriate modal contact input set files, GlobalContactNameInputSet or
GlobalPersonNameInputSet.

Add new fields as needed to these PCF files. For example, if the new name column applies only to persons,
change only the GlobalPersonNameInputSet modal files as needed.

You might not have to change the file for all modes. Configure your new fields by following the pattern of the
existing fields in the file.

See “Modal PCF files and name configuration” on page 82.
7. Use the new field in the NameFormatter class.

In the internalFormat method, add a call to append for the new field. Add the append call to the if
statement for the mode value that matches the region for the new field. Follow the pattern used for the other
regions and fields. The fieldid values are defined in gw.api.name.NameOwnerFieldId. See
“NameFormatter class” on page 83.

8. Find display names that use the NameFormatter class.
Press Ctrl+Shift+F and search for NameFormatter with Scope set to All Places and File mask set to *.en.

* The following list shows the display names that use NameFormatter in the base configuration of
PolicyCenter:
CommercialDriver.en
Company.en
Contact.en

Place.en
PolicyContactRole.en

* The following list shows the display names that use NameFormatter in the base configuration of
ContactManager:

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

ABCompany.en
ABContact.en
ABPlace.en

9. Add the new field as needed to the entity display names that use the NameFormatter class.

In the Entity Names editor, add the field both to the list of fields in the table at the top of the screen and to the
code in the lower text entry area.

Note: If the new name field applies only to persons, you need to add the name field to
Contact.en but not to Company.en or Place.en

For example :NewFieldName = newFieldName.

Modal PCF files and name configuration

PolicyCenter and ContactManager use one of two modal PCF files for names:

* GlobalContactNameInputSet — Used for Company names. In ContactManager, used for ABCompany names.

* GlobalPersonNameInputSet — Used for Person names. In ContactManager, used for ABPerson names.
Modal versions of the global name PCF files determine the available fields and their order for specific countries.

In the base configuration, PolicyCenter provides the following modal versions of the global name input set files.

Modal Name PCF Files Region

® GlobalContactNameInputSet.default e Australia
® GlobalPersonNameInputSet.default e Canada

e France

e Germany
Great Britain
United States

® GlobalContactNameInputSet.Japan e Japan
e GlobalPersonNameInputSet.Japan

To see these PCF files, navigate in the Guidewire Studio Project window to configuration—config— Page
Configuration—pcf—name.

Mapping regions to modes

A region maps to a mode through its associated localization folder’s localization_LlocaleCode.xml settings. If
there is no localization file for the region, the default mode is used.

Controlling field properties

Each modal PCF file uses an implementation of the Gosu interface NameOwner to get values for some or all of the
following field properties:

editable

label

required

value
available

Gosu name formatter

PolicyCenter uses the Gosu class NameFormatter to format read-only name display fields. You can extend
NameFormatter to handle additional regions. See “NameFormatter class” on page 83.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Name owners

NameOwner is the interface for a helper object that is passed to the modal PCF files GlobalPersonNameInputSet and
GlobalContactNameInputSet. The helper object provides a way to set and get a single name on the enclosing
entity. Typically you extend NameOwnerBase, which implements NameOwner.

While NameOwner provides methods for setting a field to be required or visible, generally it is better not to modify or
override methods such as isvisible in NameOwnerBase. For most purposes, specifying the set, required, or hidden
fields is more easily controlled by overriding property getters such as RequiredFields and HiddenFields declared
in NameOwner. You override these property getters with values such as NameOwnerFieldId.REQUIRED_NAME_FIELDS
or NameOwnerFieldId.NO_FIELDS.

Following are some properties on NameOwner:

Property Description

ContactName Sets (or retrieves) a single contact name on the enclosing entity, Contact. For example, the Name field of
GlobalContactNameInputSet.default has the value nameOwner.ContactName.Name

PersonName Sets (or retrieves) a single person name on the enclosing entity, Person. For example, the First Name field of
GlobalPersonNameInputSet.default has the value nameOwner.PersonName.FirstName

HiddenFields Set of name fields that ClaimCenter hides (does not show) in the application interface.

RequiredFields Set of name fields for which the user must supply a value.

In the base configuration, PolicyCenter provides the following classes that implement NameOwner or extend a class
that implements NameOwner:

NameOwnerBase
AffinityGroupNameOwner
BasicNameOwner
ContactNameNoSummaryOwner
ContactNameOwner
GroupNameOwner
MVRDriverNameOwner
NewAffinityGroupNameOwner
OrganizationNameOwner
PLPersonNameSearchOwner
RequiredBasicNameOwner
UserSearchNameOwner

In the base configuration, ContactManager provides the following classes that implement NameOwner or extend a
class that implements NameOwner:

NameOwnerBase
ABUserNameOwner
ContactNameOwner
PLPersonNameSearchOwner
SearchNameOwner

UserSearchNameOwner

NameFormatter class

PolicyCenter displays read-only name information in various screens. It uses class gw.name.NameFormatter to
manage and format these read-only strings.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

The NameFormatter class is used to convert Contact names to strings for globalization. If you change, add, or
delete name columns of the Contact entity or its subentities, you must also update this class.

Note: ContactManager uses NameFormatter to convert names used in ABContact and subentities of
ABContact to strings for globalization.

Additionally, if you add a new region definition, you might need to update the internalFormat method of this
class, which uses fields defined in the NameOwnerFieldId class.

The class contains several different versions of the format method with different signatures, for example:

* The following version of the format method formats a name as text and includes all fields that are used for the
current region. This case is the common one. This method has the following signature:

public function format(name : ContactNameFields, delimiter : String) : String {
_filter = \ fieldId : NameOwnerFieldId -> { return true }
return internalFormat(name, delimiter)

}

* The following version of the format method formats a name as text and includes only the specified set of fields
from the current region. This method has the following signature:

public function format(name : ContactNameFields,
delimiter : String, fields : Set<NameOwnerFieldId>) : String {
_filter = \ fieldId : NameOwnerFieldId -> { return fields.contains(fieldId) }
return internalFormat(name, delimiter)

}

The parameters for these methods have the following meanings:

Parameter Description

name The Contact name to format.

delimiter The delimiter that separates elements of the name, typically " ".

fields The set of Contact fields to include in the name.

PolicyCenter modal PCF file

The following PolicyCenter modal PCF file uses NameFormatter:
* GlobalPersonNameInputSet sets the following Value for the Name field:

new gw.api.name.NameFormatter().format(nameOwner.PersonName, " ")

The following PolicyCenter Gosu class and Gosu enhancements call NameFormatter:
gw.contact.AbstractContactResult.gs

gw.plugin.contact.impl.ContactEnhancement.gsx
gw.plugin.contact.impl.ContactKanjiEnhancement.gsx

The following PolicyCenter display names call NameFormatter to return Contact names:
* displaynames/CommercialDriver.en returns:
new NameFormatter().format(

person, " ",
NameOwnerFieldId.DISPLAY_NAME_FIELDS)

* displaynames/Company.en returns:
new NameFormatter().format(contact, " ")
» displaynames/Contact.en returns one of the following, based on Contact subtype:

new NameFormatter().format(

person, " ",
NameOwnerFieldId.DISPLAY_NAME_FIELDS)
new NameFormatter().format(contact, " ")

e displaynames/Place.en returns:

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

new NameFormatter().format(contact, " ")
* displaynames/PolicyContactRole.en returns one of the following, based on Contact subtype:

new NameFormatter().format(

person, " ",
NameOwnerFieldId.DISPLAY_NAME_FIELDS)
new NameFormatter().format(contact, " ")

ContactManager modal PCF file

The following ContactManager modal PCF file uses NameFormatter:
* GlobalPersonNameInputSet sets the following Value for the Name field:

new gw.api.name.NameFormatter().format(
nameOwner.PersonName, " ")

The following ContactManager display names call NameFormatter to return ABContact names:
* displaynames/ABCompany.en returns:
new NameFormatter().format(contact, " ")
» displaynames/ABContact.en returns one of the following, based on ABContact subtype:

new NameFormatter().format(

person, " ",
NameOwnerFieldId.DISPLAY_NAME_FIELDS)
new NameFormatter().format(contact, " ")

* displaynames/ABPlace.en returns:

new NameFormatter().format(contact, " ")

See also

» “NameOwnerFieldld class” on page 85

» “Setting up additional region and name configurations” on page 80

NameOwnerFieldld class

Guidewire provides a gw.api.name.NameOwnerFieldId class that provides type safety for Name entity fields. If you
extend the Contact entity or the ABContact entity with a new name column, you must add the new column to this
class as a new constant.

Constants that represent name fields

In the base configuration, NameOwnerFieldId provides the following constants that represent name fields.

Available constants for person name

PREFIX
FIRSTNAME
MIDDLENAME
PARTICLE
LASTNAME
SUFFIX
FIRSTNAMEKANJI
LASTNAMEKANJI

Available constants for non-person name

NP_NAME
NAMEKANJT

For example, you add the new Contact name column MyNameColumn to the NameOwnerFieldId class with the
following code:

public static final var MYNAMECOLUMN :
NameOwnerFieldId = new NameOwnerFieldId("MyNameColumn")

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Constants that use name field ID constants

Class NameOwnerFieldId also defines a set of constants that use the following name field ID constants:

public final static var ALL_PCF_FIELDS : Set<NameOwnerFieldId> =
{ PREFIX, FIRSTNAME, MIDDLENAME, PARTICLE, LASTNAME, SUFFIX, FIRSTNAMEKANJII,
LASTNAMEKANJI, NP_NAME, NAMEKANJI }.freeze()

/** Fields used for non-Person names */
public final static var ALL_CONTACT_PCF_FIELDS : Set<NameOwnerFieldId> =
{ NP_NAME, NAMEKANJI }.freeze()

/** Required fields (union of fields for both Persons and non-Persons) */
public final static var REQUIRED_NAME_FIELDS : Set<NameOwnerFieldId> =
{ LASTNAME, NP_NAME }.freeze()

/** Fields shown in display names */
public static final var DISPLAY_NAME_FIELDS : Set<NameOwnerFieldId> = {
FIRSTNAME, PARTICLE, LASTNAME, SUFFIX }.freeze()

/** Fields for simple name */
public final static var FIRST_LAST_FIELDS : Set<NameOwnerFieldId> =
{ FIRSTNAME, LASTNAME }.freeze()

public final static var HIDDEN_FOR_SEARCH : Set<NameOwnerFieldId> =
{ PREFIX, MIDDLENAME, PARTICLE, SUFFIX }.freeze()

You can add a new Contact name column to one of these constants by using its constant name, such as
MYNAMECOLUMN. For example

public final static var ALL_PCF_FIELDS : Set<NameOwnerFieldId> =
{PREFIX,
FIRSTNAME,
MIDDLENAME,
MYNAMECOLUMN,
PARTICLE,
LASTNAME,
SUFFIX,
FIRSTNAMEKANIJI,
LASTNAMEKANJI,
NP_NAME,
NAMEKANJI
}.freeze()

chapter 14

Working with Kanji fields

Kanji fields are available in various entities, such as Contact and its subtypes and Address. Additionally, Kanji
fields are supported by contact search entities and classes.

You can enable indexes for these fields to improve search performance.
* For information on Kanji fields used in names, see “Configuring name information” on page 77.

* For information on Kanyji fields used in addresses, see “Configuring address information” on page 105.

Enabling indexes for Kanji fields

Indexes are used to improve search performance and, where needed, to provide uniqueness. For Kanji fields, there
are a number of indexes provided as commented-out code in the base configuration that must be enabled if your
installation uses Kanji fields. If your installation does not use the Kanji fields provided in the base configuration, do
not enable these indexes.

You must enable Kanji indexes in both PolicyCenter and ContactManager.

Enable Kanji indexes in PolicyCenter

About this task

You will need to restart PolicyCenter and ContactManager after making these changes. While you cannot make
these changes in Guidewire Studio, you can use Studio to find all the files with commented-out Kanji indexes in
them. In Studio, press Ctrl+Shift+F, and then search for the string KanjiIndexDefinition in the entire project.
You can then open each file in a text editor and make the changes.

Procedure

1. In your file system, navigate to the files listed in step 3 and open them in an editor, not in Guidewire Studio.
2. Search for a comment that starts with KanjiIndexDefinition.
3. Uncomment the following Kanji index definitions:
/modules/configuration/config/extensions/entity/Contact.Global.etx
Uncomment the index named CompanyNameK1.
/modules/configuration/config/extensions/entity/Group.Global.etx

Uncomment the index named groupiK.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Enable Kanji indexes in ContactManager

About this task

You will need to restart ContactManager after making these changes. While you cannot make these changes in
Guidewire Studio™ for ContactManager, you can use Studio to find all the files with commented-out Kanji indexes
in them. In Studio, press Ctrl+Shift+F, and then search for the term KanjiIndexDefinition in the whole project.

Procedure

1. In your file system, navigate to the files listed in step 3 and open them in an editor, not in Guidewire Studio.
2. Search for a comment that starts with KanjiIndexDefinition.
3. Uncomment the following Kanji index definitions:
ContactManager/modules/configuration/config/extensions/entity/Contact.Global.etx
Uncomment the index named CompanyNameK1
ContactManager/modules/configuration/config/extensions/entity/Group.Global.etx
Uncomment the index named group1K.
Comment out the index named groupl.
ContactManager/modules/configuration/config/extensions/entity/ABPerson.etx
Uncomment the following indexes:
¢ ABPersonKWFNCSK
¢ ABPersonKWFNPCK
* CFindDupeNameK
ContactManager/modules/configuration/config/extensions/entity/Address.etx

Uncomment the indexes named address2K and addressék.

chapter 15

Working with the Japanese Imperial
Calendar

PolicyCenter provides a Japanese Imperial calendar date picker that you can display in the user interface. You enable
this feature through configuration. After you enable it, you can specify the default calendar type for an entity

property.
The date widget displays only the most recent Imperial eras. They are:
* Reiwa
* Heisei
» Showa
* Taisho
* Meiji
The Japanese Imperial Calendar has the following usage limitation:
» Copy and paste of a date string into the date input field can often produce an incorrect entry.

* Your web browser must be using the same time zone as the PolicyCenter server. If the time zone for the web
browser is different from the server, the calendar date picker does not save the correct date.

Configuring Japanese dates

You configure PolicyCenter display of Japanese Imperial calendar dates by specifying the
<JapaneseImperialDateFormat> element in localization_LocaleCode.xml. The
<JapaneseImperialDateFormat> element is similar to the existing Gregorian <DateFormat> element. You define
the following attributes:

Date format Description

long, medium PolicyCenter uses only the long and medium date formats to display Japanese dates. You cannot use these fields
to format user input data.

short PolicyCenter uses the short date format to format user date input. Any date input format pattern that you
choose must be compatible with the fixed width of the input mask. Guidewire recommends that you use
short="G yy/MM/dd".

yearSymbol PolicyCenter uses the Japanese yearSymbol as a signal to render the Japanese Imperial calendar date picker.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

To see the default setting for the Japanese Imperial calendar in the PolicyCenter base configuration, open file
localization_ja_JP.xml in following Guidewire Studio location:

configuration— config— Localizations

Set the Japanese Imperial Calendar as the default for a region

About this task

PolicyCenter provides a way to set a default calendar for a region through the defaultCalendar attribute of the
<GWLocale> element. Additionally, for the Japanese Imperial Calendar, you must also set
enableJapaneseCalendar of the <GWLocale> element to true. These attributes determine whether or not to enable
the Japanese calendar for this region.

IMPORTANT Guidewire uses the International Components for Unicode (ICU) open source library to
format dates according to the Japanese Imperial calendar. The ICU library specifies formats according
to the historical Imperial calendar. Contemporary changes to the calendar, such as the start of a new
era, require an updated ICU library. If such an event occurs, contact Guidewire support for details on
how to upgrade to a newer version of the ICU library.

Procedure
1. In the Guidewire Studio Project window, navigate to configuration—config— Localizations and double click
localization_ja_JP.xml to open it in the editor.
2. Add the defaultCalendar attribute to the <GWLocale> element, with the value set to JapaneseImperial.

3. Add the enableJapaneseCalendar attribute to the <GWLocale> element, with the value set to true.

<GWLocale
code="ja_JP"
name="Japanese"
typecode="ja_JP"
defaultCalendar="JapaneseImperial”
enableJapaneseCalendar="true">

Result
After setting these calendar attributes, if the user chooses this region in PolicyCenter, all dates are shown as
Japanese Imperial Calendar dates.

See also

* “Working with regional formats” on page 67

Set fields to display the Japanese Imperial Calendar

About this task

You can set a field of an entity to display the Japanese Imperial calendar when it is used in the PolicyCenter user
interface. For example, you want to add an additional field to the Activity object that uses the
japaneseimperialdate data type.

[q GuiDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

IMPORTANT You must configure your installation for the Japanese locale to display a date in
Japanese Imperial calendar format. Otherwise, regardless of the calendar setting, you see only
Gregorian dates.

Procedure

1. Open Guidewire Studio™.

2. Navigate in the Project window to configuration— config— Extensions— Entity, and then double-click
Activity.etx to open it in the editor.

3. Right-click an element on the left, such as entity (extension) and choose Add new—extension—column.
4. Select the new column and enter the following values for the following attributes:
* name — JICDate
* type — japaneseimperialdate
* nullok — true
To be useful, you need to use this field to display a value in the Japanese Imperial calendar format.
For example, in the Workplan screen for a claim, you can add a Japanese Date field.

In the following screen you see a Gregorian date for the Due column and a Japanese Imperial date for the
Japanese Date column. This result is possible when you do not define the Japanese Imperial Calendar as the
default for the region. The user must still set the regional format to Japan, however. If you had defined the
Japanese Imperial Calendar as the default calendar in localization_ja_JP.xml, all dates would be in
Japanese Imperial format. “Set the Japanese Imperial Calendar as the default for a region” on page 90.

Workplan

All open activities

1= Due Japanese Date | Priority Status Subject
2015/03/28 High Open Send reservation of rights letter
2015/03/26 FRE 27/03/31 High Open Legal review

s W PY B WY

2015/03/1 f\ormi OEW Call '.n*i-'t"uess

In the WorkplanLV PCF file, the field definition looks similar to the following:

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

|E| WarkplanLV.pcf

ListViewPane VorkplanlV' Claim, sctivityList, FilberSet

Tterator Activity

| Due HJapanese Date H Priority

%)
&l

WorkplanFilter =

PN W VI

Activity. UpdatedSincelastviewed || Activity Escalated

Activity. Priority Activi

n]

pCF | 1= xML
Properties: |5 "] | PostOnChange | Reflection
DateCell: JapaneseDate

[= Basic properties

k-\ %uﬂgju#-;o“l

action x |
dateFormat
editable false
id* JapaneseDate
label displaykey.LV.Activity.Workplan.hctivities.JapaneseDate
required
timeFormat
value Rctivity.JICDate
e i Dsiic _ b Sl
e g A B R]

Set keyboard shortcut for Imperial Era

In working with the Japanese Imperial Calendar inputs, you can use a keyboard shortcut to select the Imperial Era.

About this task

Entering the first character of the English translation of the Japanese Imperial Calendar (JIC) era selects that era in
the JIC date input field. For example, entering H as soon as the date input receives focus automatically selects the
Heisei Era. In a similar fashion, entering R in the data input field automatically selects the Reiwa Era.

You must configure this functionality by adding a <JapaneseImperialDateFormat> element to localization file
localization_en_US.xml.

Procedure
1. In the Guidewire Studio Project window, navigate to the following location and open file
localization_en_US.xml:
configuration— config— Localization
2. Inside the <GWLocale> element, starting on a new line immediately after the last item in the group, add a

<JapaneseImperialDateFormat> element, for example:

<GWLocale code="en_US" name="United States (English)" typecode="en_US">
<DateFormat long="E, MMM d, yyyy" medium="MMM d, yyyy" short="MM/dd/yyyy"/>
<TimeFormat long="h:mm:ss a z" medium="hh:mm:ss a" short="h:mm a"/>

<NumberFormat decimalSymbol="." thousandsSymbol=","/>
<CurrencyFormat negativePattern="($#)" positivePattern="$#" zeroValue="-"/>
<JapaneseImperialDateFormat

long=""

medium=""

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

short=
/>
</GWLocale>

See localization file localization_ja_JP.xml for an example of what to enter for the element attributes.
These three element attributes are required.

3. Save your work.

Next steps

You must stop and restart the application server for this change to take effect.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

chapter 16

Configuring geographic data

You can configure the typelists Jurisdiction, Country, and State, and configuration file zone-config.xml for
the territorial data in your instance of PolicyCenter.

About country typecodes

In the base configuration, Guidewire provides the country typelist Country. ttx, which defines a standard set of
countries. The country information includes the ISO country code and the English language country name. The ISO
country code is the two-character uppercase ISO 3166 code for a country or region. To view a list of countries
codes, refer to the following web site:

https://www.iso.org/obp/ui/

Individual country definitions can provide additional country information as well. For example, the Country.ttx
typecode definition for VA, Vatican City, indicates that the currency in use is the euro, code eur.

Configuring address formats by country

The country.xml files in the country folders define settings that control the appearance of address information for
each country in PolicyCenter. To access the country.xml file for a specific country, navigate to the following
location in the Project window in Guidewire Studio for PolicyCenter:

configuration—config—geodata— countryCode

For example, the country.xml file for the address-related information in Australia is in the following location in
Studio:

configuration—config—geodata—AU
In the base configuration, Guidewire provides country.xml definition files for the following countries:
* AU — Australia
* CA—Canada
* DE — Germany
* FR— France
* GB — Great Britain
e JP —Japan
* US — United States

Setting <Country> attributes

You can set the following attributes on the <Country> element.

https://www.iso.org/obp/ui/

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Attribute

Description

PCFMode

PCF mode for GlobalAddressInputSet.pcf. In the base configuration, Guidewire provides
three modes for showing address information. The base configuration modes are:

e BigToSmall — Used to format addresses for Japan
® PostCodeBeforeCity — Used to format addresses for France and Germany
e default — Used to format all other addresses

The default value is default.

You can add new PCF modes and use them in the file country.xml.

postalCodeDisplayKey

Name of the display key to use for the postal code label in PolicyCenter. For example:
¢ In the United States (US) — Web.AddressBook.AddressInputSet.ZIP
¢ InJapan (JP) — Web.AddressBook.AddressInputSet.Postcode

The default value is Web.AddressBook .AddressInputSet.PostalCode.

cityDisplayKey

Name of the display key to use for the city label for a country. For example:
¢ In Great Britain (GB) —Web.AddressBook.AddressInputSet.TownCity
The default value is Web.AddressBook.AddressInputSet.City.

stateDisplayKey

Name of the display key to use for the label designating the major administrative subdivisions
in a country. For example:

¢ In the United States (US) —Web.AddressBook.AddressInputSet.State

* In Canada (CA) — Web.AddressBook.AddressInputSet.Province

e InJapan (JP) —Web.AddressBook.AddressInputSet.Prefecture
The default value is Web.AddressBook .AddressInputSet.State.

visibleFields

Comma-separated list of address-related fields that you want to be visible in PolicyCenter for
this country. For example, for AU, the values are:

* Country

e AddressLinel
® AddressLine2
® AddressLine3
e City

* State

® PostalCode

Any address field that you designate as visible in this file must correspond to the constants
defined in AddressOwnerFieldId.gs.

Display key values

For attributes that take display key values, PolicyCenter uses display properties files defined in Resource Bundle
'display' in the Localizations folder. For example:

* PolicyCenter uses display.properties for U.S. English

* PolicyCenter uses the appropriate display_LlanguageCode.properties file, such as
display_ja_3JP.properties for Japan.
If there is no existing display_LanguageCode.properties file for a region, PolicyCenter uses the default

display.properties file.

See also

* “Configuring address data and field order for a country” on page 108

* “Address modes in page configuration” on page 111

* “Localizing display keys” on page 35.

Setting the default application country

You set the default application country using configuration parameter DefaultCountryCode, stored in the file
config.xml. This parameter determines which country PolicyCenter uses if the user does not specify a country for

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

an address. PolicyCenter also uses the value of this parameter as the default country code for any new addresses that
it creates. The country code must be a valid ISO country code that exists as a typecode in the Country typelist.

See the following page to search a list of ISO country codes:
https://www.iso.org/obp/ui

See also

* Configuration Guide.

Configuring jurisdiction information

Guidewire applications divide jurisdictions into several areas:
» National jurisdictions — Japan or France, for example
* State or province jurisdictions — Idaho, U.S.A, or, Ontario, Canada, for example

* Other jurisdictions — Other local regulatory jurisdictions at a level below the country level, such as Berlin,
Germany

In the base configuration, Guidewire provides a Jurisdiction typelist that contains a set of pre-defined
jurisdictions. This typelist is used by a number of PCF files to display a list of states or provinces, as well as
jurisdictions that are not states or provinces.

Many PolicyCenter fields that appear to reference a state actually reference a jurisdiction instead. For example:
* TaxLocation.State
* TaxLocationSearchCriteria.State

* TerritoryLookupCriteria.State

Configuring state information

State information includes both the name of the state and the usual abbreviation of the state name.
The State typelist

PolicyCenter provides a State typelist to represent states, prefectures, or provinces. The typecodes in this
typelist have Name values that are full, unabbreviated names, such as Washington for the US typecode WA and
Western Australia for the AU typecode AU_WA.

The StateAbbreviation typelist

Abbreviations corresponding to State typecodes are defined in the typelist StateAbbreviation. This typelist
provides a set of typecodes with Name values that are abbreviations for states or provinces.

Note: Japan (JP) does not use abbreviations for its prefecture names.

Mapping between state names and state abbreviations

For countries that use state abbreviations, such as AU and US, there is a one-to-one relationship between the
country’s typecodes for State and StateAbbreviation. This relationship supports distinguishing between
abbreviations that have the same value in more than one country. For example, the abbreviation WA is used both in
the United States for the state of Washington and in Australia for the state of Western Australia.

For the countries defined in the StateAbbreviation typelist, you can use methods on the State and
StateAbbreviation typelists to get abbreviations and state names.

State typelist abbreviation methods

The following methods used by the State typelist are defined in gw.entity.GWStateEnhancement.gsx.

https://www.iso.org/obp/ui

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

State.getAbbreviation

* Parameters — none
* Return value — typekey.StateAbbreviation

» Comments — Returns the abbreviation typekey for the state as defined in the StateAbbreviation typelist. This
value can vary based on the current language setting. Returns null if no abbreviation is defined, such as for
Japanese prefectures.

State.getState

¢ Parameters — country:Country, anAbbreviation:String
* Return value — typekey.State

* Comments — Look up a State by using the country typecode and the country-dependent, localized state
abbreviation. For example, if the language is U.S. English:

o getState(TC_AU, "WA") returns Western Australia.
o getState(TC_US, "WA") returns Washington.

State.getStateAbbreviation

* Parameters — country:Country, anAbbreviation:String
* Return value — typekey.StateAbbreviation

* Comments — Looks up a StateAbbreviation by using the country and the country-dependent, localized state
abbreviation. For example, if the language is U.S. English:

o getStateAbbreviation(TC_AU, "WA") returns the StateAbbreviation typekey for Western Australia.
o getStateAbbreviation(TC_US, "WA") returns the StateAbbreviation typekey for Washington.

StateAbbreviation typelist abbreviation method

There is one method used by the StateAbbreviation typelist that is defined in
gw.entity.GWStateAbbreviationEnhancement.gsx:

StateAbbreviation.getState

¢ Parameters — none
* Return value — typekey.State

» Comments — Returns the State typekey associated with the current StateAbbreviation typecode.

Zone configuration

PolicyCenter uses zone-config.xml files to define one or more zones. A zone is a combination of a country and
zero or more address elements, such as a city or state in the United States or a province in Canada. You can
configure zones to apply to any area in a single country. In the United States, for example, you typically define
zones by state, city, county, and ZIP code. There is a separate zone-config.xml file for each country defined in the
base configuration.

PolicyCenter uses zones for the following:
» Region and address auto-fill

* Business week and holiday definition by zone

Overview of configuring zones

To use zones in your application, you must import zone files, either files that you have created or files that you have
purchased from a vendor. For example, your company might have bought a dataset from a company like GreatData.
You then use this dataset to plan your zone configuration. For more information, see “Importing address zone data”
on page 103

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Note: PolicyCenter ships with sample address data for Australia, Canada, Canada with FSA,
Germany, France, Japan, and the United States of America. This data is for use in testing and is not
suitable for a production environment.

In planning, consider what parts of an address you need to auto-fill and the format of the ZIP or postal codes. Also,
note if any of the values are not unique for a country. For example, the country has two cities with the same name.

While most countries have a similar format for addressing, there can be differences. For example, France uses a
five-digit postal code plus a city. Additionally, France has a small locality format that includes more information.

You can define multiple zone types for a country. For example, you can divide your country into zones by county,
state, and city. Most cities are in a single zone, such as a state in the United States or a province in Canada.

Zone types are defined as typecodes in the ZoneType typelist. You use these typecodes as elements in the zone-
config.xml file. You can add your own zone types to this typelist.

A zone type can be defined to refer to another zone types by using a link. PolicyCenter uses links to look up a zone
based on another zone. An example is the relationship between the ZIP code and the state for US zones. Your
configuration could link ZIP code to state. For example, given the ZIP code of 94404, the application could auto-fill
the corresponding state, California.

You do not necessarily need to define all the Zone subelements for a zone. For example, you can define a zone as the
entire country, such as the following definition for all of Australia:

<Zones countryCode="AU"/>

Location of zone configuration files

PolicyCenter stores the zone-config.xml files in folders under the geodata folder. Each file is in its own individual
country folder. For example, PolicyCenter stores the zone-config. xml file for the address-related information for
Australia in the following location in the Studio Project window:

configuration—config—geodata —AU
In the base configuration, Guidewire defines zone hierarchies for the following geographical locations:
* AU — Australia
* CA—Canada
* DE — Germany
* FR—France
* GB — Great Britain
e JP —Japan
* US — Unites States of America
In each zone-config.xml file, you define:
* The links between the country’s zones, the zone hierarchy
» How PolicyCenter uses those links to extract the value of a zone from address data

* How PolicyCenter imports data from zone data files

Zone configuration files

A zone-config.xml file contains the following XML elements:
* <Zones>
* <Zone>
* <ZoneCode>
* <Links>
* <AddressZoneValue>

For example, in the base configuration, PolicyCenter defines the zone hierarchy for the United States in the
following file:

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

configuration—config—geodata —US—zone-config.xml

This file uses the following elements:

<Zones countryCode="US">
<Zone code="zip" fileColumn="1" granularity="1" regionMatchOrder="1" unique="true">
<AddressZoneValue>Address.PostalCode.substring(@,5)</AddressZoneValue>
<Links>
<Link toZone="city"/>
</Links>
</Zone>

<Zone code="state" fileColumn="2" granularity="4" regionMatchOrder="3">
<AddressZoneValue>
Address.State.Abbreviation.DisplayName
</AddressZoneValue>
<Links>
<Link toZone="zip" lookupOrder="1"/>
<Link toZone="county"/>
<Link toZone="city"/>
</Links>
</Zone>

<Zone code="city" fileColumn="3" granularity="2">
<ZoneCode>state + ":" + city</ZoneCode>
<AddressZoneValue>
Address.State.Abbreviation.DisplayName + ":" + Address.City
</AddressZoneValue>
<Links>
<Link toZone="zip"/>
</Links>
</Zone>

<Zone code="county" fileColumn="4" granularity="3" regionMatchOrder="2">
<ZoneCode>state + ":" + county</ZoneCode>
<AddressZoneValue>
Address.State.Abbreviation.DisplayName +
</AddressZoneValue>
<Links>
<Link toZone="zip" lookupOrder="1"/>
<Link toZone="city" lookupOrder="2"/>
</Links>
</Zone>
</Zones>

+ Address.County

See also

* For information on the zone import command, see the System Administration Guide.

<Zones> element

This element defines the largest region, a country. The zone-config.xml file contains a single <Zones> element
representing the zones in a specific country. Each <Zones> element contains one or more <Zone> elements.

The <Zones> element takes the following attributes:

Attribute Description
countryCode This required element defines the country to which this zone configuration applies.
dataFile For Guidewire internal use only. Do not set this attribute.

<Zone> element

The <Zone> subelement of <Zones> defines a zone type. The zone type must exist in the ZoneType typelist. The
Zone element takes the following attributes, all optional except for the code attribute:

[GUIDEWIRE

Guidewire PolicyCenter 10.1.2 Globalization Guide

Attribute Description

code Sets the zone type, which must be a valid value defined in the ZoneType typelist. You also use
this value as a symbol in <ZoneCode> expressions to represent the data extracted from the da-
ta import file based on the column specified in the fileColumn attribute.

fileColumn This optional attribute specifies the column in the import data file from which to extract the
zone data. The numeric value of fileColumn indicates the ordered number of the column in
the data file. For example, fileColumn="4" specifies the fourth column in the data file.
A <Zone> element without a fileColumn attribute can contain an expression that derives a
value from the other zone values. For example, in the base configuration, Guidewire defines
the following fsa zone in the Canadian <Zones> element:

<Zone code="fsa" regionMatchOrder="1" granularity="1">

<ZoneCode> postalcode.substring(@,3) </ZoneCode>
<AddressZoneValue> Address.PostalCode.substring(0,3) </AddressZoneValue>
</Zone>
Both the <ZoneCode> and <AddresszZoneValue> elements extract data from the actual address
data by parsing the data into substrings.
Notes:

e Specify at least one <Zone> element with a fileColumn attribute. If you do not specify at
least one fileColumn attribute, then PolicyCenter does not import data from the address
zone data file.

e Import address zone data on first installing Guidewire PolicyCenter, and then at infrequent
intervals thereafter as you update zone definitions.

granularity Sets size levels for each defined zone. The smallest geographical region is 1. The next larger
geographical region is 2, and so on. The sequence of numbers must be continuous.
PolicyCenter uses this value with holidays and business weeks.

orgZone For Guidewire internal use only. Do not set this attribute.

regionMatchOrder Controls the order in which PolicyCenter uses these zones in matching algorithms.
PolicyCenter uses this attribute as it matches users to a zone for location-based or proximity-
based assignment. For example, in the base configuration for the United States, Guidewire
defines the following <Zone> attributes for a county:

<Zone
code="county"
fileColumn="4"
regionMatchOrder="2"
granularity="3" >

</Zone>

Setting the regionMatchOrder to 2 means that PolicyCenter matches county data second, af-
ter another zone, while matching a user to a location.
The county value also:

e Appears in the fourth column of the data file.

e Is third in granularity, one size less than a state—granularity 4—and one size more
than a city—granularity 2.

unique This optional attribute specifies whether the zone data is unique. For example, in the United

States, a county data value by itself does not guarantee uniqueness across all states. There is a
county with the name of Union in seventeen states and a county with the name of Adams in
twelve states.
To differentiate zones that can be identical—not unique—use a <ZoneCode> element to con-
struct a zone expression that uniquely identifies that zone data. For example, you can combine
the county name with the state name to make a unique identifier by defining the following
<ZoneCode> subelement of <Zone>:

<ZoneCode>

state + ":" + county
</ZoneCode>

See also, “<ZoneCode> element” on page 102.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

<ZoneCode> element

The <ZoneCode> element is a subelement of <Zone> used to differentiate identical zone information. It is possible
that zone information is not unique, meaning that the zone import data column contains two or more identical
values. In this case you need to use <ZoneCode> to define an expression that uniquely identifies the individual zone.

For example, in the United States, it is possible for multiple states to have a city with the same name, such as
Portland, Oregon and Portland, Maine. To uniquely identify the city, you associate a particular state with the city. To
make this association, create an expression that prepends the state import data value to the city import data value to
obtain a unique city-state code:
<Zone code="city" fileColumn="3" granularity="2">
<ZoneCode>
state + ":" + city
</ZoneCode>
</iéﬁe>
This expression specifies that the State value must be concatenated with the County value, separated by a colon (:)
delimiter. The values you use to construct the expression must be valid <Zone> code values, other than constants,
that are defined in a <Zones> element for this country.

See also

» “<Zone> element” on page 100

<Links> element

The <Links> element is a subelement of <Zone>. This element defines one or more <Link> elements, each of which
defines a connection—a link—between one zone type and another. For example, in the base configuration,
Guidewire provides a <Link> element that defines a link between a county and a ZIP code in the United States. You
can also use a link to define a lookup order to speed up searches.

Note: An address-config.xml file can define auto-fill elements that use these links. See
“Configuring autofill and autocompletion in address-config.xml” on page 113.

The <Link> element has the following attributes:

Attribute Description

lookupOrder This optional attribute specifies the order in which to apply this value while performing a lookup. Specifying
a lookup order can increase performance somewhat. If you do not specify a lookupOrder value,
PolicyCenter uses the order that appears in the file.

toZone This required attribute defines a relationship to another zone for PolicyCenter to use if the value of the
<Zone> attribute code is not available for lookup.

For example, the following code defines a relationship between one zone type, county, and several other zone types.
PolicyCenter uses these other zone types to look up an address if the address does not contain a county value.

<Zone code="county" fileColumn="4" regionMatchOrder="2">

<Links>
<Link toZone="zip" lookupOrder="1"/>
<Link toZone="city" lookupOrder="2"/>
</Links>
</Zone>

This code has the following meaning:

e The first <Link> definition, <Link toZone="zip" lookupOrder="1"/>, creates a link from county to zip. If
PolicyCenter cannot look up the address by its county value, then PolicyCenter attempts to look up the address
first by zip value.

e The second <Link> definition, <Link toZone="city" lookupOrder="2"/>, creates a link from county to city.
If PolicyCenter cannot look up the address by its county value or its zip value, it looks up the address by its
city value.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

See also

* “<Zone> element” on page 100

<AddressZoneValue> element

The <AddresszZoneValue> element is a subelement of <Zone>. This element uses an expression to define how to
extract the zone code from an Address entity. Use entity dot notation, such as Address.PostalCode, to define a
value for this element. These expressions can be subsets of an element or a concatenation of elements.

PolicyCenter extracts a value from the address data that uses this element and matches the value against zone data in
the database. For example, in the base configuration, PolicyCenter defines a <Zone> element of type postalcode for

Canada. It looks similar to the following:
<Zone code="postalcode" fileColumn="1" unique="true">
<AddressZoneValue>
Address.PostalCode

</AddressZoneValue>
</Zone>

Given this definition, PolicyCenter uses the value of the PostalCode field on the Address entity as the value of the
postalcode zone.

Note: Guidewire recommends that you set this value even if there is a property defined on the
Address entity that has the same name as the Zone name.

See also

» “<Zone> element” on page 100

Importing address zone data

You can import address zone data when you first install the product and at infrequent intervals thereafter as you
receive data updates. You use the zone_import command to import zone data into staging tables, and then you use
the table_import command to import the staging table data.

In the base configuration, Guidewire provides the following sample zone data files in
configuration—config—geodata:

e AU-Locations.txt — Australia

* CA-Locations.txt — Canada

* DE-Locations.txt — Germany

* FR-Locations.txt — France

* GB-Locations.txt — Great Britain

* JP-Locations.txt —Japan

* US-Locations.txt — Unites States of America

Guidewire provides these files for testing purposes to support auto-fill and auto-complete when users enter
addresses. You must import one of these files to use it in testing those features. This data is provided on an as-is
basis. The provided zone data files are not complete and might not include recent changes.

The formatting of individual data items in these files might not conform to your internal standards or the standards
of third-party vendors that you use. For example, the names of streets and cities are formatted with mixed case
letters, but your standards might require all upper case letters.

The US-Locations.txt file contains information that does not conform to United States Postal Service (USPS)
standards for bulk mailings. You can edit this file to conform to your particular address standards, and then import
that version of the file.

Guidewire does not provide complete and up-to-date zone data files that you can import with the zone_import
command. You must create these files or obtain them from vendors, like GreatData.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

See also

* For information on the zone import command, see the System Administration Guide

Basic zone types

You can define basic zone types for your country configuration in the ZoneType typelist.

ZoneType typelist
The base configuration of the ZoneType typelist provides typecodes for Australia, Canada, France, Germany, Japan,
and the United States. The base PolicyCenter configuration provides zones for the following items:
* Country
» City
« City Kanji
* County
 State
* Prefecture
* Province
* Postal code
o ZIP code
* FSA
* Post code area
* Post code region
FSA stands for Forward Sortation Area, the first three letters of a Canadian postal code.

Add a new zone type

Procedure

1. In the Studio Project window, navigate to the following location:
configuration— config— Extensions— Typelist

2. Double-click ZoneType. ttx to open it for editing.

3. Edit the typelist and enter the necessary information for a new zone type code.

chapter 17

Configuring address information

In PolicyCenter, an address represents a street or mailing address. An address can also contain geographic location
information for use in proximity searches.

PolicyCenter uses address information for the following business entities:
» Contacts
* Account locations
* Policy locations
* Policy addresses
* Producer addresses

PolicyCenter bases organizations and users on contacts. Therefore, these objects use addresses as well. PolicyCenter
also uses address-related information for the following:

* Territory codes
* Tax locations
* WC excluded workplaces

However, these last items are largely specific to the United States, and you can generally ignore them if you are not
using the en_US region.

Read-only and Editable Addresses

PolicyCenter displays address information as read-only text or as editable text entry fields:

* PolicyCenter displays read-only addresses as read-only text on multiple lines. PolicyCenter uses the
country.xml file for the current country and the AddressFormatter class to determine which address fields to
show.

* PolicyCenter displays editable addresses as a set of editable text fields in which you can add, modify, or delete
information. PolicyCenter uses the country.xml file for the current country to determine the address fields to
show.

PolicyCenter displays a range selector—a drop-down list—in the address screen to enable you to select from an
array of appropriate addresses. If you cannot edit an address, the address fields are dimmed. The drop-down list can
also display a New command that you can use to create a new address.

Address Owners

PolicyCenter builds the address view around the concept of an address owner. The address owner identifies the
object that owns a particular address. Additionally, the address owner controls how the address widget looks in the
user interface and ensures that PolicyCenter saves the address properly. You can define different address owners
depending on your requirements.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

See also

* “Addresses and the AddressFormatter class” on page 106
* “Address modes in page configuration” on page 111

e “Address owners” on page 111

o “AddressOwnerFieldld class” on page 112

Overview of global addresses

The information that you see for an address depends on:
* The country of the address.
* Whether PolicyCenter displays the address as text entry ficlds or read-only text

Overview of Country XML files

The country.xml files define settings that control the appearance of address information in PolicyCenter. In
Guidewire Studio, you can see that there is a country.xml file for each defined country. PolicyCenter stores the
country.xml files in folders under the geodata folder. Each file is in its own individual country folder. For
example, the country.xml file for the address-related information in Australia is in the following location in Studio:

configuration—config—geodata—AU

See also

» “Configuring address data and field order for a country” on page 108.

Overview of modal address PCF files

In general, the country of an address determines which address fields in the database are visible in the PolicyCenter
user interface for that address. The page configuration file GlobalAddressInputSet has modal versions that make
different sets of address fields visible. The modal versions of GlobalAddressInputSet also control the order in
which PolicyCenter displays address fields.

You can configure the modal versions of PCF GlobalAddressInputSet to provide a modal version for each country
for which you want to support address editing. However, in practice, the addresses of different countries follow a
small number of patterns in terms of components of an address and their order of presentation. Components of an
address include the street name, the house number, the city, and country. Some countries have additional address
components, such as prefecture in Japan, state in the United States, and province in Canada.

In the base configuration, Guidewire provides the following modal versions of the PCF file
GlobalAddressInputSet:

* GlobalAddressInputSet.default — Used for Australia, Canada, Great Britain, and the United States.
* GlobalAddressInputSet.BigToSmall — Used for Japan.
* GlobalAddressInputSet.PostCodeBeforeCity — Used for France and Germany.

To determine which modal PCF file is used for a country, you set the PCFmode attribute in the country.xml file for
that country. See “PCFMode attribute of the country XML file” on page 109.

See also

* For more information on GlobalAddressInputSet, see “Address modes in page configuration” on page 111.
» For more information on modal PCF files, see the Configuration Guide.

Addresses and the AddressFormatter class

The AddressFormatter class is used to convert addresses to localized strings for display as read-only address
information. If you change, add, or delete columns of the Address entity, you must also update this class.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Additionally, if you add a new country definition, you might need to update the switch statement in the
internalFormat method of this class.

There are two types of addresses in PolicyCenter:
 Synchronized
» Unsynchronized

Unsynchronized addresses apply to policy location addresses and policy addresses. An address is unsynchronized if
the following are all true:

» The address is part of a completed job (a promoted branch).
» The associated account location address has changed since the job was completed.
Unsynchronized addresses are read-only. There are several ways to handle this situation:

» Expand the unsynchronized address definition in the PCF to apply to the entire address. Currently, PolicyCenter
does not treat the street address portion of the PCF as either synchronized or unsynchronized.

» Format the display string by using the gw.address.AddressFormatter class.

PolicyCenter displays read-only address information in several different places. PolicyCenter displays read-only
address information as a string in which the address values are separated by commas or by line-feeds. PolicyCenter
uses class gw.address.AddressFormatter to manage and format read-only strings.

The AddressFormatter class consists of two parts:

* The class contains variables for all the address columns. You can extend the class to add new variables if you
extend the Address entity with new columns.

* The class contains two versions of the format method with different signatures.

The method parameters have the following meanings:

Parameter Description
address The address to format.
delimiter Use this delimiter to separate the various string elements. If the delimiter is a comma, then

the method also adds a space after the comma.

fields The set of fields to include in the address.

PolicyCenter calls class AddressFormatter from the following places:
* From entity.Address.DisplayName. Use the Entity Names editor to modify the address string definition.
* From the Address.addressString method, defined in enhancement AddressEnhancement
* From the PolicylLocation.addressString method, defined in enhancement PolicylLocationEnhancement
e From the PolicyAddress.addressString method, defined in enhancement PolicyAddressEnhancement

Each of these uses creates a new AddressFormatter instance, populates the variables, and then returns
AddressFormatter.addressString.

In particular:

* Address.DisplayName always passes the same parameters. The other three uses just pass through the three
parameters that they receive. This method always return a comma-delimited address string. However, this
method is simpler to use because it requires no additional parameters.

* Address.addressString is the more general form of usage with an address, especially if the delimiter value is
something other than a comma.

e Policylocation.addressString and PolicyAddress.addressString work in the same manner as the
Address.addressString method, except that they pass in the internally enhanced values for the address values.
Other code in these enhancements determines whether to use the associated address values, or the internal values.

See also

* “Additional country and address configurations” on page 110

Guidewire PolicyCenter 10.1.2 Globalization Guide

[GUIDEWIRE

Addresses and states or jurisdictions

The country of an address controls the label used for the state or province field of an address through the
stateDisplayKey setting in country.xml for that country. The Jurisdiction and State typelists have definitions
for states, provinces, and other jurisdictions, each of which can be filtered.

Some examples:

 For Japan, PolicyCenter displays Kanji address fields.

* For Canada, PolicyCenter displays the label Province for this field.

See also

* “Configuring the Country XML file” on page 108

* “Configuring jurisdiction information” on page 97

Address configuration files

The following configuration files that you can access in Guidewire Studio™ play a role in address configuration.

Studio location

File

Description

configuration— config— Exten-
sions— Typelist

State.ttx

Used for addresses and locations.

StateAbbreviation.ttx

Abbreviations used for states, provinces,
and jurisdictions.

Jurisdiction.ttx

Jurisdictions that regulate insurance and
licensing. Similar to the State typelist.

Country.ttx

Definitions of country codes for countries
and regions.

configuration—config—geoda-
ta—CountryCode

address-config.xml — Defines formats to
use for address autofill and input masks for
postal codes.

country.xml — See “Configuring the Coun-
try XML file” on page 108

zone-config.xml — See “Zone configura-
tion” on page 98

Each country code has its own settings
for these three files

configuration—config—geodata

CountryCode-locations.txt

Mappings between postal codes and cit-
ies for a country

Configuring address data and field order for a country

You use country-specific country.xml files to configure the data and order that PolicyCenter uses to display
addresses for specific countries. A country maps to an address mode by using the settings in country.xml.

If you add a new address format for a country or you add a new Address property, you must configure the files that
support read-only addresses. See “Additional country and address configurations” on page 110.

Configuring the Country XML file

PolicyCenter stores country.xml files in country-specific folders under the geodata folder, which you can access in
Guidewire Studio. For example, PolicyCenter stores the country.xml file for Japan in the following folder:

configuration— config—geodata—JP

File country.xml defines the following address-related attributes:

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Attribute Description More information
visibleFields Which address fields to display “Visible fields attribute of the country XML file” on page 109
PCFMode Order in which to display address “PCFMode attribute of the country XML file” on page 109
fields
postalCodeDisplayKey Label for the postal code field “Postal code display key attribute of the country XML file” on
page 109
stateDisplayKey Label for state or province field “State display key attribute of the country XML file” on page 110

Visible fields attribute of the country XML file

Attribute visibleFields on the <country> element in file country.xml defines the set of address fields that are
visible for this country. For example:

France
visibleFields="Country,AddressLinel,AddressLine2,AddressLine3,PostalCode,City,CEDEX,CEDEXBur

eau
Japan

visibleFields="Country,PostalCode,State,City,CityKanji,AddressLinel,AddressLinelKanji,Addres
sLine2,AddressLine2Kanji"

United States
visibleFields="Country,AddressLinel,AddressLine2,AddressLine3,City,State,PostalCode,County"
The order of the fields does not matter. The fields must be defined in the class AddressOwnerFieldId.

If a country.xml file does not have visibleFields defined, PolicyCenter uses the set of address fields defined for
the United States.

See also

* “AddressOwnerFieldld class” on page 112

PCFMode attribute of the country XML file

The attribute PCFMode of the country.xml file determines which modal version of the address PCF file that
PolicyCenter uses for specific countries. For example, country-specific country.xml files individually specify the
PCF mode for the following countries:

France
PCFMode="PostCodeBeforeCity"
Japan
PCFMode="BigToSmall"

If a country.xml file does not define the PCFMode attribute, PolicyCenter uses the default modal version of the
address PCF file. In the base configuration, the default version is generally suitable for English-speaking countries.

See also

* “Address modes in page configuration” on page 111

Postal code display key attribute of the country XML file
The attribute postalCodeDisplayKey sets the display key to use as the label for the postal code of an address. For
example, PolicyCenter uses the following display keys to label the postal code field for the following countries:
Japan
postalCodeDisplayKey="Web.AddressBook.AddressInputSet.Postcode"

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

United States
postalCodeDisplayKey="Web.AddressBook.AddressInputSet.zZIP"

If a country.xml file does not define postalCodeDisplayKey, PolicyCenter uses the value "Postcode".

State display key attribute of the country XML file

The attribute stateDisplayKey sets the display key to use as the label for state or province of an address. For
example, PolicyCenter uses the following display keys to label the state or province field for the following
countries:

Japan
stateDisplayKey="Web.AddressBook.AddressInputSet.Prefecture"

United States
stateDisplayKey="Web.AddressBook.AddressInputSet.State"

If a country.xml file does not have stateDisplayKey defined, PolicyCenter uses the value of stateDisplayKey
defined for the United States.

Additional country and address configurations

Before you begin

If you add a new country, you must do configuration in addition to the configurations required for the country.xml
file, described in “Configuring the Country XML file” on page 108.

Procedure

1. You must add the country to a method of the AddressFormatter class.

Add a new case option to the switch statement of the AddressFormatter.internalFormat method to handle
the formatting of the address string for the new country.

2. If you extend the Address entity to add a new column, you must also incorporate this column into the
following class, enhancement, or configuration file:

gw.address.AddressFormatter

Add a new case option to the switch statement of the AddressFormatter.internalFormat method to
handle the formatting of the address string for the new country.

Address.en

Modify the definition of the display name through the Entity Names editor. See the Configuration Guide
for details.

AddressOwnerFieldID.gs
Add a variable for the new Address column to this class.
See “AddressOwnerFieldld class” on page 112.
gw.policylocation.PolicylLocationEnhancement
Do the following:

a. Modify the PolicyLocation.addressString method as needed and populate any added column before
calling the AddressFormatter class.

b. Add the get and set values for the new internal address columns.
gw.policyaddress.PolicyAddressEnhancement
Do the following:

a. Modify the PolicyAddress.addressString method as needed and populate any added column before
calling the AddressFormatter class.

b. Add the get and set values for the new internal address columns.

[q GuiDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

c. Add the new columns to the copyToNewAddress and copyFromAddress functions.

See also

* “Addresses and the AddressFormatter class” on page 106

Address modes in page configuration

PolicyCenter uses a modal PCF file for all addresses, GlobalAddressInputSet. Modal versions of the global
address PCF file determine the order of fields in addresses of specific countries.

In the base configuration, PolicyCenter provides the following modal versions of GlobalAddressInputSet.

Modal Address PCF File Country

GlobalAddressInputSet.BigToSmall e Japan

GlobalAddressInputSet.PostCodeBeforeCity e France
e Germany

Australia
e Canada

GlobalAddressInputSet.default

Great Britain
United States

To see the GlobalAddressInputSet PCF files, open Guidewire Studio™ and navigate in the Project window to
configuration—config—Page Configuration—pcf—address.

Mapping Countries to Modes

A country maps to a mode through the settings in country.xml.

Controlling Field Properties
Each modal PCF file uses an implementation of the Gosu interface AddressOwner to control the following field
properties:

* available

* editable

* required

e visible

Gosu Address Formatter

PolicyCenter uses Gosu class AddressFormatter to format the address display fields. You can extend
AddressFormatter to handle additional countries.

Address owners

AddressOwner is the interface for a helper object that is passed to the GlobalAddressInputSet PCF file. The helper
object provides a way to set and get a single address on the enclosing entity. It also provides methods that you can
use to set a field as required or visible. Following are some properties on AddressOwner.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Property Description

Address Sets or retrieves a single address on the enclosing entity. For example, you can use this proper-
ty to set or get the primary address for a Contact. PolicyCenter automatically creates a new
Address object if you use a Gosu expression of the form:

owner.Address.State = someState

HiddenFields Set of address fields that PolicyCenter hides (does not show) in the application interface.

RequiredFields Set of address fields for which the user must supply a value.

In the base configuration, PolicyCenter provides the following classes that implement AddressOwner or extend a
class that implements AddressOwner:

AddressOwnerBase
OptionalSelectedCountryAddressOwner
AccountAddressSearchOwner
AddressCountryCityStatePostalCodeOwner
ContactResultAddressSearchOwner
PolicyInfoAddressOwner

AddressOwnerFieldld class

Guidewire provides a gw.api.address.AddressOwnerFieldId class that provides type safety for Address entity
fields. If you extend the Address entity with a new column, you must add the new column to this class as a new
constant.

In the base configuration, AddressOwnerFieldId provides the following constants that represent address fields:

ADDRESSLINE1
ADDRESSLINE2
ADDRESSLINE1KANJII
ADDRESSLINE2KANJII
ADDRESSLINE3
ADDRESSTYPE

CEDEX

CEDEXBUREAU

CITY

CITYKANJI

COUNTRY

COUNTY
DESCRIPTION
POSTALCODE

STATE

VALIDUNTIL

The class AddressOwnerFieldId also defines a set of constants that use these address field ID constants. Some
examples:

public final static var ALL_PCF_FIELDS : Set<AddressOwnerFieldId> =
{ ADDRESSLINE1, ADDRESSLINE2, ADDRESSLINE3, CITY, COUNTY, STATE,
POSTALCODE, COUNTRY, ADDRESSLINE1KANJI, ADDRESSLINE2KANIJI,
CITYKANJI, CEDEX, CEDEXBUREAU }.freeze()

public final static var CITY_STATE_ZIP : Set<AddressOwnerFieldId>
{ CITY, STATE, POSTALCODE, CEDEX, CEDEXBUREAU }.freeze()

public final static var HIDDEN_FOR_SEARCH : Set<AddressOwnerFieldId> =
{ ADDRESSLINE1, ADDRESSLINE2, ADDRESSLINE3, COUNTY, ADDRESSLINE1KANJI,
ADDRESSLINE2KANJI, CEDEX, CEDEXBUREAU }.freeze()

Address autocompletion and autofill

PolicyCenter supports automatic fill-in and completion of address information.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

Address autofill

The autofill feature enables you to enter a value in one address field in a Guidewire application and have the
application fill in other address fields automatically.

For example, if configured, entering a postal code causes PolicyCenter to fill in the city and state or province fields
automatically. For example, the user enters a postal code of 99501 for a United States address. PolicyCenter sets the
city to Anchorage, the state to Alaska, and the county to Anchorage.

To trigger autofill, the user must enter a value and then navigate away from the initial address field, such as the
postal code field. It is also possible to trigger this functionality by using the autofill icon next to certain address
fields. There must also be a unique match, such as state and city to postal code.

Address autocompletion

The autocomplete feature enables you to enter the first few characters of a field and see a drop-down list showing
the matching values. The drop-down list displays possible completions of the entered characters based on the values
in other address fields.

For example, suppose that a user sets the State value in a United States address to CA (California). The user then
moves to the City field and enters Pa as the start of a city name. If configured, PolicyCenter opens a drop-down list
that shows names of cities in California that start with Pa, such as:

* Pacifica

* Pacoima

» Palm Springs
» Palo Alto

» Panorama City
» Pasadena

» Paso Robles

The user can then select one of the items on the drop-down list to populate the address field.

Configuring autofill and autocompletion in address-config.xml

To configure the fields that support address autofill and autocompletion for a country, configure that country’s
address-config.xml file.

Note: The address-config.xml file uses zones defined in zone-config.xml. See “Zone
configuration files” on page 99.

PolicyCenter stores address-config.xml files in country-specific folders under the geodata folder, which you can
access in Guidewire Studio. For example, the address-config.xml file for Japan is stored in the following folder:

configuration—config—geodata—JP

The following default configuration for the United States, in configuration—config—geodata—US, shows elements
that you can use in this file:

<AddressDef name="US">
<Match>
<Field name="Country" value="US"/>
</Match>
<Fields>
<Field name="City" zonecode="city">
<AutoFillFromZone code="zip"/>
<AutoFillFromZone code="state"/>
</Field>
<Field name="County" zonecode="county">
<AutoFillFromZone code="zip"/>
<AutoFillFromZone code="city"/>
<AutoFillFromZone code="state"/>
</Field>
<Field name="State" zonecode="state">
<AutoFillFromZone code="zip"/>
<AutoFillFromZone code="city"/>
</Field>
<Field name="PostalCode" zonecode="zip">

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

<AutoFillFromZone code="city"/>
<AutoFillFromZone code="state"/>
<ValidatorDef
value="[0-9]{5}(-[0-9]{4})?>"
description="Validator.PostalCode.US"
input-mask="H#H##H - HHHE" />
</Field>
</Fields>
</AddressDef>

The following table describes the elements in the address-config. xml file.

AddressDef The name of the address format. This element takes a name attribute and an optional
priority attribute. By convention, the name is the country code.
A country can have more than one address format—for example, it is possible that different
regions have different formats. The priority attribute specifies which address definition has
priority if several of them match. The highest priority is 1, the next lower one is 2, and so on.

Match Each AddressDef must contain one Match element. PolicyCenter matches only on the country.
The Match element contains a Field subelement that defines the name and value attributes
that the application uses to determine which definition applies.

Fields Each AddressDef contains a single Fields element that contains a list of the address Field
elements.
Field Specifies an address field. Each field takes a name that must match a property on the Address

entity. The Field element can appear in the Match element or the Fields element.
In the Match element, the Field element has a required name attribute and an optional value
attribute, which is the code value from the Country typelist. It has no child elements.
In the Fields element, the Field element has a required name attribute and optional
zonecode and autoCompleteTriggerChars attributes. It can also have the child elements
AutoFillFromZone and ValidatorDef.
* The value attribute is a valid value for the Field. This value is usually a code value from a
typelist, such as a state typecode from the typelist for a Field with the name set to State.
¢ The zonecode attribute corresponds to a Zone code configured for the given country in
zone-config.xml. This value links the Address configuration to the Zone configuration.
For information on zone configuration, see “Zone configuration files” on page 99.
* The autoCompleteTriggerChars attribute specifies the number of characters to enter
before the application triggers autocomplete. The default value is O (zero).

AutoFillFromZone Specifies a field that is examined for autofill and autocompletion of the field. PolicyCenter uses
the zone code to look up the field value. See “Zone configuration files” on page 99.

ValidatorDef Contains information for validating the field in the optional attributes value, description,
and input-mask.
Note: Do not define field validators in address-config.xml. Guidewire recommends that you
define them in fieldvalidators.xml. See the Configuration Guide.

The previous address-config.xml example defines a Match on the country with the match value as US.
Additionally, it defines four fields:

* City

¢ County

¢ State

* PostalCode

Each field defines one or more AutoFillFromZone elements. Looking at the County, you can see that the
application fills the County from the zip, the city, and the state. Each AutoFillFromZone entry must correspond

to a <Link> definition in zone-config.xml, as described in “Zone configuration files” on page 99. That file
specifies that autofill can use ZIP code and city for the look-up operation.

As PolicyCenter loads address-config.xml, it validates the configuration. PolicyCenter verifies that every Field
element, regardless of whether it is defined in Match or Fields, corresponds to a field on the Address entity. Then,
PolicyCenter verifies that each AutoFillFromZone element references a zone in zone-config.xml.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

See also

* Integration Guide

Configuring autofill and autocompletion in a PCF file

You can configure autofill and autocomplete after you have configured zone mapping and addressing and have
imported your zone data. PolicyCenter uses the following main classes for address autofill and autocompletion.

gw.api.contact.AddressAutocompleteHandler

Class provides methods for getting matching values from the database.
gw.api.contact.AddressAutocompleteUtil

Class supplies methods for automatically completing an address field.
You can integrate autofill and autocompletion into a PCF file in the following ways.
Complete a field automatically after you type in a few characters

For example, if you enter 941 for the ZIP code, the autocomplete list shows 94110, 94111, 94112, and so forth.
Fill other address fields after you complete a field and tab out of it

For example, after you enter the ZIP code 94115, autofill can fill in the city, county, and state as San Francisco,
San Francisco, and California respectively. This level of autofill happens only if there is a unique match
between the fields. For example, with San Francisco as the city and California as the state, autofilling the ZIP
code would not work because San Francisco has multiple ZIP codes. This matching is done in the default
autocompletion and autofill plugin, matching between the fields and the zone definitions.

Force an override of already filled fields

By default, if a field already has a value, PolicyCenter does not overwrite it. You can force it to override the field
value with zone data by using a method on AddressAutocompleteUtil to autofill the address.

In addition, there are two PCF widgets that you can use to support autofill:
* AddressAutoFillRange
* AddressAutoFillInput

Both widgets provide a small icon for autofilling the fields on demand.

Add address autocomplete

Procedure

1. Create an AddressAutocompleteHandler instance in the appropriate PCF file.

You create the instance by calling the factory method
gw.api.contact.AddressAutocompleteHandler.createHandler with the following arguments:

+ A string identifying the field to complete

» A comma-separated list of the reference fields, field names of the Address entity, that the application passes
to the handler

* A Boolean value that specifies whether PolicyCenter waits for a key press before fetching suggestions

2. Edit the PCF file in Guidewire Studio and add the factory method in the Variables tab of the PCF widget,
calling the method in the initialvalue field.

Suppose that you want to construct an AddressAutocompleteHandler called cityhandler in the
GlobalAddressInputSet.default.pcf file. In that case, you need to first add the cityhandler variable in
the Variables tab, then set its various fields as follows:

initialValue

contact.AddressAutocompleteHandler
.createHandler("City","City,County,State,PostalCode,Country",true)

name

cityhandler

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

recalculateOnRefresh

false
From the method call, you can see that this handler operates on the City field. The handler requires the
following set of reference fields: City, County, State, PostalCode, and Country.

3. Edit the widget that uses the handler to specify which handler is responsible for autofill in the autoComplete
property and the arguments the handler expects in the autoCompleteArgIds field.

For example, for AddressAutoFilllnput: City:

action

gw.api.contact.AddressAutocompleteUtil
.autofillAddress(addressOwner.AddressDelegate, "City")

actionAvailable
addressOwner.AutofillIconEnabled
autoComplete
cityhandler
autoCompleteArglds
City,County,State,PostalCode,Country
available

addressOwner.isAvailable(fieldId.CITY)
This example uses an AddressAutoFillInput widget for the city field. This widget displays an autofill icon
beside the field that acts as a cue. You do not have to use this specific type of widget for this purpose.

Address automatic completion and autofill plugin

The address automatic completion plugin uses interface IAddressAutocompletePlugin to declares methods that
support automatic completion and fill-in for PolicyCenter. In the base configuration, Guidewire provides Java class
DefaultAddressAutocompletePlugin as the implementation class for this plugin.

This class supports the use of the address-config.xml and zone-config.xml files. If you want to implement your
own autofill and autocompletion configuration, such as one that does not use zone-config.xml, you can create a
class that implements IAddressAutocompletePlugin and provide your own specialized logic.

Alternatively, you can extend DefaultAddressAutocompletePlugin and override the following methods, for
example.

autofillAddress(address : AddressFillable, triggerFieldName : String, doOverride : boolean)
The purpose of this method is to autofill and address if there is a unique match with the entered data.
getStates(country : Country): States[]
This method retrieves the states for the given country.

Example: Add a country with a new address field

Basic configuration of the suburb field

This example shows how to add a new New Zealand address field named Suburb to PolicyCenter and
ContactManager. The example configures classes, entities, and configuration files that support address fields so the
new field can be used in the user interface and be available for autofill and autocompletion.

This example is not a full example showing how to perform a complete localization configuration, but rather focuses
on configuring the new address field to work in ContactManager and PolicyCenter. After configuration, if you edit a
contact’s address and set the country to New Zealand, you will be able to use the Suburb field.

Note: Except where the instructions say explicitly to work only in ContactManager or only in

PolicyCenter, do everything in both ContactManager and PolicyCenter.

This example includes the following steps to perform the basic configuration in Guidewire Studio™.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

© ® NSO GO REBD=2

-
e

1.

“Add a suburb field to the GlobalAddress entity” on page 117

“Make changes so suburb field uses autofill” on page 117

“Add a New Zealand locale type and suburb zone type” on page 118

“Add New Zealand localization configuration files” on page 119

“Add a New Zealand folder under the geodata folder” on page 119

“Add a New Zealand field validator file” on page 121

“Add typecodes for currency and jurisdiction” on page 121

“Configure the Currency XML file for New Zealand currency” on page 122
“Edit supporting user interface files and add New Zealand suburb field” on page 122
“Add a New Zealand suburb field to the user interface” on page 123
“Restart Studio and modify ContactManager” on page 124

Add a suburb field to the GlobalAddress entity

Procedure

1.

Navigate to configuration— config— Extensions—Entity and double-click GlobalAddress.etx to open it in the
editor.

2. Right-click the top element on the left, the delegate(extension) GlobalAddress, and choose Add new—column.

3. Enter the following values on the right:

* name — Suburb_Ext

* type —varchar

* nullok — true

* desc —Address field for countries that have both a suburb and a city field

Guidewire recommends that you always add the _Ext extension to any new entity field that you add to the
base PolicyCenter data model.

4. On the left, right-click the new Suburb_Ext column and choose Add new—columnParam.

Enter the following values on the right:
* name —size

* value —50

Next steps

The next step is “Make changes so suburb field uses autofill” on page 117.

Make changes so suburb field uses autofill

Before you begin

Complete the step “Add a suburb field to the GlobalAddress entity” on page 117 before you perform this step.

Procedure

1.

Press Ctrl+N and enter AddressFillableExtension, and then press Enter to open this class.

2. Add the following lines of code:

property get Suburb() : String
property set Suburb(value : String)

3. Press Ctrl+N and enter AddressFillableExtensionImpl, and then press Enter to open this class.
4. Add the following line of code:

var _Suburb : String as Suburb

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

5. Press Ctrl+N and enter UnsupportedAddressFillable, and then double-click
UnsupportedAddressFillable in the search results to open this class.

6. Add the following lines of code:

override property get Suburb(): String {
return _unsupportedBehavior.getValue<String>()

}
override property set Suburb(value: String) {
_unsupportedBehavior.setValue("Surburb™)

7. Press Ctrl+N and enter AddressAutofillableDelegate, and then press Enter to open this class.

8. Add the following lines of code:

override property set Suburb(value : String) { _af.Suburb = value }
override property get Suburb() : String { return _af.Suburb }

9. Press Ctrl+N and enter AddressEntityDelegate, and then press Enter to open this class.
10. Add the following lines of code:

override property get Suburb() : String {
return _ao.Address.Suburb }

override property set Suburb(value : String) {
_ao.Address.Suburb = value }

Next steps

The next step is “Add a New Zealand locale type and suburb zone type” on page 118.

Add a New Zealand locale type and suburb zone type

Before you begin

Complete the step “Make changes so suburb field uses autofill” on page 117 before you perform this step.

Procedure
1. Navigate in the Project window to configuration— config—Metadata— Typelist and right-click
LocaleType.tti.
2. Choose New— Typelist extension to create the file LocalType.ttx.

+ If you see a Typelist Extension dialog enabling you to choose one of several LocaleType.ttx locations,
choose the one in configuration/config/extensions/typelist/ and then click OK.

+ If you see a message saying that typelist extension is not allowed, then the file LocaleType.ttx already
exists. Open that file instead.

3. In the editor for LocaleType. ttx, right-click the top element on the left, typelistextension LocaleType, and
choose Add new—typecode.

4. Enter the following values for the new typecode:
* code —en_NZ
* name —New Zealand (English)
* desc —New Zealand (English)

5. Navigate in the Project window to configuration— config— Extensions— Typelist and double-click
ZoneType.ttx.

6. In the editor, right-click the top element on the left, typelistextension ZoneType, and choose Add
new—typecode.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

7. Enter the following values for the new typecode:
* code — suburb
* name — Suburb
* desc —Suburb
8. In the editor right-click the suburb typecode and choose Add new—Add categories.
9. Click suburb in the list of typecodes and then click Next.
10. In the Typelist list, click Country, and in the Category list, click Nz, and then click Finish.

Next steps

The next step is “Add New Zealand localization configuration files” on page 119.

Add New Zealand localization configuration files

Before you begin

Complete the step “Add a New Zealand locale type and suburb zone type” on page 118 before you perform this step.

Procedure

Navigate in the Project window to configuration— config— Localizations.
Right-click Localizations and choose New—File. Name the new file localization_en_NZ.xml.

Copy the contents of localization_en_US.xml and paste it to this new file.

PN =

In localization_en_NZz.xml, configure the <GWLocale> element to use en_NZ as the country and to use date
configurations appropriate for New Zealand:
<GWLocale code="en_NZ" name="New Zealand (English)" typecode="en_NZ">

<DateFormat long="E d MMM yyyy" medium="d MMM yyyy" short="dd/MM/yyyy"/>
<TimeFormat long="h:mm:ss a z" medium="hh:mm:ss a" short="h:mm a"/>

<NumberFormat decimalSymbol="." thousandsSymbol=","/>
<CurrencyFormat negativePattern="($#)" positivePattern="$#" zerovalue="-"/>
</GWLocale>
Next steps

The next step is “Add a New Zealand folder under the geodata folder” on page 119.

Add a New Zealand folder under the geodata folder

Before you begin

Complete the step “Add New Zealand localization configuration files” on page 119 before you perform this step.

About this task

In this step, you create a folder for New Zealand under the geodata folder and add configuration files for country,
address, and zone.

Procedure

1. Navigate in the Project window to configuration—config—geodata.
2. Right-click geodata and choose New—Package. Name the new package NZ.

3. Copy the three files under the geodata/AU folder to this new folder. The three files are address-config.xml,
country.xml, and zone-config.xml.

4. Double-click the copied country.xml file to open it in the editor.
5. Add Suburb to the visibleFields definition and remove State:

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

visibleFields=
"Country,AddressLinel,AddressLine2,AddressLine3, Suburb,City,PostalCode"

6. Double-click the copied address-config.xml file to open it in the editor.

7. Set the file up to use NZ as the country and the name, and to use Suburb instead of State:

<AddressConfig xmlns="http://guidewire.com/address-config">
<AddressDef name="NZ">
<Match>
<Field name="Country" value="NZ"/>
</Match>
<Fields>
<Field name="City" zonecode="city">
<AutoFillFromZone code="suburb"/>
<AutoFillFromZone code="postalcode"/>

</Field>
<Field name="Suburb" zonecode="suburb">
<!-- Do not autofill from the city because a definitive match

to suburb from the city isn't possible-->
<AutoFillFromZone code="postalcode"/>

</Field>
<Field name="PostalCode" zonecode="postalcode">
<!-- Autofill first from suburb, because most people use suburb and
postcode is a new concept. -->
<!-- Postcodes are not unique by city. For example, 0420 maps to the

following cities: Cable Bay, Coopers Beach, Mangonui, Taipa -->
<AutoFillFromZone code="suburb"/>
<AutoFillFromZone code="city"/>
<ValidatorDef value="[0-9]{4}"
description="Validator.PostalCode.NZ" input-mask="#i##"/>
</Field>
</Fields>
</AddressDef>
</AddressConfig>

8. Double-click the copied zone-config.xml file to open it in the editor.
9. Change the country code to NZ:

countryCode="Nz"

10. Add Suburb to the zone definitions, change its relationship to postal code and city, and remove State.
This file defines the CSV file order for each zone data entry to be postal code, suburb, city.

<Zones countryCode="NZ">
<l-- The uniqueness of the postcode is based on the containing zone.
The postcode's container is the country and the deciding factor is whether
or not the postcode is unique within the country. and not the fact that the same
postal code is shared by multiple cities. For example, 0420 maps to the following
cities: Cable Bay, Coopers Beach, Mangonui, Taipa -->
<Zone code="postalcode" fileColumn="1" granularity="1" regionMatchOrder="1">
<AddressZoneValue>Address.PostalCode.substring(0,4)</AddressZoneValue>
<Links>
<Link toZone="suburb" lookupOrder="1"/>
<Link toZone="city" lookupOrder="2"/>

</Links>
</Zone>
<Zone code="suburb" fileColumn="2" granularity="2" regionMatchOrder="2">
<l-- As described for the postcode, the containing zone for the suburb

is the city and therefore the suburb is not unique per city.
Some examples: HillCrest is a suburb of both Hamilton and Rotorua.
Avondale is a suburb of Auckland and Christchurch -->
<ZoneCode> city + ":" + suburb </ZoneCode>
<AddressZoneValue>
Address.City + ":" + Address.Suburb
</AddressZoneValue>
<Links>
<Link toZone="postalcode" lookupOrder="1"/>
<Link toZone="city" lookupOrder="2"/>

</Links>
</Zone>
<Zone code="city" fileColumn="3" granularity="3" regionMatchOrder="3">
<l-- City (and town) names are unique in the country. They might have similar

names such as Palmerston North, which is in the North Island,
and Palmerston, which is in the South Island, but there is
always a distinction. -->

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

<AddressZoneValue> Address.City </AddressZoneValue>
<Links>
<Link toZone="postalcode" lookupOrder="1"/>
<Link toZone="suburb" lookupOrder="2"/>
</Links>
</Zone>
</Zones>

Next steps

The next step is “Add a New Zealand field validator file” on page 121.

Add a New Zealand field validator file

Before you begin

Complete the step “Add a New Zealand folder under the geodata folder” on page 119 before you perform this step.

About this task

In this step you add a field validator file for New Zealand and add the field validator for a New Zealand postal code
to it.

Procedure

Navigate in the Project window to configuration—config—fieldvalidators.
Right-click fieldvalidators and choose New—Package, and then enter NZ and click OK.
Copy fieldvalidators.xml from AU to the new NZ folder.

In the new file, change Validator.PostalCode.FourDigit to Validator.PostalCode.NZ. The new
validator definition is:

o Nh =

<ValidatorDef
description="Validator.PostalCode.NZ"
input-mask="####" name="PostalCode"
value="[0-9]{4}"/>

Next steps

The next step is “Add typecodes for currency and jurisdiction” on page 121.

Add typecodes for currency and jurisdiction

Before you begin

Complete the step for “Add a New Zealand field validator file” on page 121 before you perform this step.

Procedure

1. Navigate in the Project window to configuration— config— Extensions— Typelist.
2. Double-click Currency.ttx to open this typelist in the editor.

3. In the editor, right-click the top element on the left, typelistextension Currency, and choose Add
new—typecode.

4. Enter the following values for the new typecode:
* code —nzd
* name — NZD
* desc —New Zealand Dollar
5. Double-click Country.ttx to open this typelist in the editor.
6. In the editor, right-click the NZ typecode and choose Add new—Add categories.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

7. Click NZ in the list of category typecodes and then click Next.
8. In the Typelist list, click Currency, and in the Category list, click nzd, and then click Finish.
9. Double-click Jursdiction.ttx to open this typelist in the editor.

10. In the editor, right-click the top element on the left, typelistextension Jursdiction, and choose Add
new—typecode.

11. Enter the following values for the new typecode:
* code —NZ
* name —New Zealand
* desc —New Zealand
12. In the editor, right-click the NZ typecode and choose Add new— Add categories.
13. Click NZ in the list of category typecodes and then click Next.
14. In the Typelist list, click Country, and in the Category list, click Nz, and then click Finish.
15. In the editor, right-click the NZ typecode again and choose Add new—Add categories.
16. Click NZ in the list of typecodes and then click Next.
17. In the Typelist list, click JurisdictionType, and in the Category list, click insurance, and then click Finish.

Next steps

The next step is “Configure the Currency XML file for New Zealand currency” on page 122.

Configure the Currency XML file for New Zealand currency

Before you begin

Complete the step “Add typecodes for currency and jurisdiction” on page 121 before you perform this step.

Procedure

Navigate in the Project window to configuration— config—currencies.
Right-click currencies and choose New—Package, and then enter nzd and click OK.

Copy the currency.xml file from the aud folder to the new nzd folder.

P oo Dd =

In the editor for nzd/currrency.xml, change the currency code from "aud" to "nzd" and the currency
description from "Australian Dollar" to "New Zealand Dollar". The resulting code is:

<Currency xmlns="http://guidewire.com/currency">
<CurrencyType code="nzd" desc="New Zealand Dollar" storageScale="2">
<CurrencyFormat zeroValue="-"/>
</CurrencyType>
</Currency>

Next steps

The next step is “Edit supporting user interface files and add New Zealand suburb field” on page 122.

Edit supporting user interface files and add New Zealand suburb field

Before you begin

Complete the step “Configure the Currency XML file for New Zealand currency” on page 122 before you perform
this step.

Procedure

1. Press Ctrl+Shift+N and enter Address.en, and then double-click Address. en in the search results to open it
in the editor.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

2. In the top part of the editor, click the Add icon and then enter the following values:
* Name — suburb
* Entity Path — Address.Suburb
3. Below this top pane, there is a code pane with a Default tab. Click this tab and add a line of code defining a

Suburb to the list of formatter address field definitions. If necessary, add a comma to the end of the
preceding line:

:CEDEXBureau = CEDEXBureau,
:Suburb = suburb

4. In ContactManager only, this code pane also has a Full tab. Click this tab and make the same addition as you
did in the Default tab.

5. Press Ctrl+N and enter AddressOwnerFieldId, and then double-click AddressOwnerFieldId in the search
results to open this class in the editor.

6. Add the following line of code to the constant declarations for available fields:

public static final var SUBURB : AddressOwnerFieldId =
new AddressOwnerFieldId("Suburb")

7. Add the Suburb field to the constant representing all PCF address fields:

public final static var ALL_PCF_FIELDS : Set<AddressOwnerFieldId> =
{ ADDRESSLINE1, ADDRESSLINE2, ADDRESSLINE3, SUBURB, CITY, COUNTY,
STATE, POSTALCODE, COUNTRY, ADDRESSLINE1KANJI, ADDRESSLINE2KANJI,
CITYKANJII, CEDEX, CEDEXBUREAU }.freeze()

8. Hide the Suburb field from the default search screens by changing the settings in AddressOwnerFieldId for
HIDDEN_FOR_SEARCH and HIDDEN_FOR_PROXIMITY_SEARCH:
public final static var HIDDEN_FOR_SEARCH : Set<AddressOwnerFieldId> =

{ ADDRESSLINE1, ADDRESSLINE2, ADDRESSLINE3, SUBURB, COUNTY, ADDRESSLINE1KANJI,
ADDRESSLINE2KANJII, CEDEX, CEDEXBUREAU }.freeze()

public final static var HIDDEN_FOR_PROXIMITY_SEARCH : Set<AddressOwnerFieldId> =
{ ADDRESSLINE1KANJI, ADDRESSLINE2KANJI, SUBURB, CITYKANJI,
CEDEX, CEDEXBUREAU }.freeze()
You can change this setting later if New Zealand is to be the default region.
9. Press Ctrl+N and enter AddressFormatter, and then double-click AddressFormatter in the search results to
open this class in the editor.
10. Add the following case to switch(_addrCountry) to indicate the suburb, city, and postal code format for a

New Zealand address:

case TC_NZ:
append(cszBuf, fieldId.SUBURB, delimiter, addr.Suburb)
append(cszBuf, fieldId.CITY, " ", addr.City)
append(cszBuf, fieldId.POSTALCODE, " ", addr.PostalCode)
break
Next steps

The next step is “Add a New Zealand suburb field to the user interface” on page 123.

Add a New Zealand suburb field to the user interface

Before you begin

Complete the step “Edit supporting user interface files and add New Zealand suburb field” on page 122 before you
perform this step.

Procedure

1. Navigate in the Project window to configuration— config—Page Configuration—pcf—address and double-click
GlobalAddressInputSet.default to open it in the editor.

Guidewire PolicyCenter 10.1.2 Globalization Guide

. Click InputSet: GlobalAddressInputSet atthe top of the screen to open its Properties pane at the
bottom.

. Click the Variables tab, and then click Add (plus sign) to add a new variable. Enter the following values:
* initialValue —

contact.AddressAutocompleteHandler.createHandler(
"Suburb", "Suburb,City,County,State,PostalCode, Country",true)

* name — suburbhandler

4. In the screen, select the Address 3 Input widget.

. Drag an AddressAutofillInput widget from the Toolbox to the Address 3 Input widget and drop it so it
appears after this widget. Select the new widget.

. In the Properties panel, set the following values:

* editable — addressOwner.isEditable(fieldId.SUBURB)
* id — Suburb

* required — addressOwner.isRequired(fieldId.SUBURB)
* value — addressOwner.AddressDelegate.Suburb

* action —

if (addressOwner.AutofillIconEnabled)
gw.api.contact.AddressAutocompleteUtil.autofillAddress(
addressOwner.AddressDelegate, "Suburb")

* actionavailable — addressOwner.AutofillIconEnabled
* autoComplete — suburbhandler
* autoCompleteArglds — Suburb,City,County,State,PostalCode,Country
* available — addressOwner.isAvailable(fieldId.SUBURB)
* visible — addressOwner.isVisible(fieldId.SUBURB)
* label — displaykey.Web.AddressBook.AddressInputSet.Suburb
Do the following to create this display key.
o If you see a red icon:
a. Click the red icon and choose Create Display Key.
b. Under en_US, enter Suburb and then click OK.
o If no red icon appears:

a. Navigate in the Project window to configuration— config— Localizations— Resource Bundle 'display’
and double-click display.properties to open this file in the editor.

b. Add the key Web.AddressBook.AddressInputSet.Suburb = Suburb to that file.

[GUIDEWIRE

Next steps

The next step is “Restart Studio and modify ContactManager” on page 124.

Restart Studio and modify ContactManager

Before you begin

Complete the step “Add a New Zealand suburb field to the user interface” on page 123 before you perform this step.

Procedure

1. Close and restart Guidewire Studio™ to clear any errors you see reported in the classes that you changed.

2. Modify the ContactMapper class in both PolicyCenter and ContactManager to pass the field to and from
ContactManager:

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

a. Navigate in the Project window to configuration—gsrc and then to gw/contactmapper/ab9ee/
ContactMapper.

b. Adda call to fieldMapping for Address#Suburb after the field mapping call for Address#CEDEXBureau:

fieldMapping(Address#CEDEXBureau),
fieldMapping(Address#Suburb),

3. Make the following web service change in ContactManager only:
a. Ifnecessary, open Guidewire Studio for ContactManager.

b. Navigate in the Project window to configuration—gsrc and then to gw/webservice/ab/ab9ee/
abcontactapi/AddressInfo.

c. Add the following variable definition to the list of variables at the top of the class:

public var Suburb : String

d. Add the following line of code to the method construct(address : Address):

this.Suburb = address.Suburb

4. Restart ContactManager.
5. In Guidewire Studio for PolicyCenter, reload the ContactManager web service, as follows:

a. In the Project window, navigate to configuration—gsrc—wsi—remote—ab—ab900 and double-click
ab900.wsc to open it in the editor.

b. In the Resources pane, click ${ab}/ws/gw/webservice/ab/ab900/abcontactapi/ABContactAPI?wsdl
to select it.

c. At the bottom of the Resources pane, click Fetch Updates.

See also

* “Overview of global addresses” on page 106
* “Configuring address data and field order for a country” on page 108
» “Zone configuration” on page 98

* Guidewire Contact Management Guide

Additional information for configuring New Zealand localization

To test autofill and autocomplete in the New Zealand configuration, you need to import New Zealand sample data
supporting the zones defined in zone-config.xml. If you use the previous zone-config.xml configuration, the
format of the data is postal code, suburb, city. For example:

0110,Abbey Caves,Whangarei

9018, Abbotsford,Dunedin

3330,Acacia Bay,Taupo
8011,Addington,Christchurch

* For information on creating zone information in a file you can import, see “Zone configuration” on page 98.

* For information on importing the file you create, see the System Administration Guide.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Additional configurations you can perform are:

* Adding New Zealand jurisdictions to Jursidiction.ttx to provide drop-down lists of jurisdictions in the user
interface. The previous example adds only New Zealand itself as a country typecode to this typelist.

* Adding New Zealand regions in the PolicyCenter Administration tab. You can then associate these regions with
user groups and use them to assign work. See:

o Application Guide

» Configuring New Zealand language support and regional formats. For example, after completing the previous
configuration for the Suburb field, the only English language support is en_US. See:

o “Working with languages” on page 19

o “Working with regional formats” on page 67

chapter 18

Configuring and localizing phone
information

Phone number formats are specific to each country. Guidewire PolicyCenter uses country information to determine
the appropriate fields to show for user entry of the phone number. PolicyCenter also uses country information to
correctly format a phone number in read-only mode.

See also

* “Gosu field validation” on page 142

Phone configuration parameters

PolicyCenter uses the following configuration parameters in config.xml to set phone-related information.

Configuration parameter Description

DefaultPhoneCountryCode The default ISO country code to use for phone data. The country code must be a
valid ISO country code that exists as a typecode in the PhoneCountryCode typelist.
See the following web site for a list of valid ISO country codes:

https://www.iso.org/obp/ui/
The base application default phone country code is US.

DefaultNANPACountryCode The default country code for region 1 phone numbers. If mapping file
nanpa.properties does not contain the area code for this region, then
PolicyCenter defaults to the area code value configured by this parameter.

The base application default NANPA phone country code is US.

AlwaysShowPhoneWidgetRegionCode A Boolean value that indicates whether the phone number widget in PolicyCenter
always shows a selector for phone region codes. The base application value for this
parameter is false.

Configuring area codes and phone number validation

You can set area codes for North America, validate international phone numbers and area codes, and validate phone
numbers and area codes with alternate formats in the phone configuration files.

Accessing phone configuration files

Guidewire stores phone configuration files in the following location in Guidewire Studio Project window:

https://www.iso.org/obp/ui/

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

configuration—config—phone

Configuration files in the phone folder include the following:

File Description

nanpa.properties Area codes as defined by the North American Numbering Plan Administra-
tion (NANPA). These area codes apply to North American countries other
than the United States.

PhoneNumberMetaData. xml Area codes and validation rules for international phone numbers.

PhoneNumberAlternateFormats.xml Additional area codes and validation rules for international phone num-
bers. See the comments at the beginning of the file for more information.

Any change to an XML file in the phone folder requires that you regenerate the phone data in the PolicyCenter data
subdirectory. To regenerate phone data, run the following gwb utility from the application installation directory:

gwb genPhoneMetadata

Working with PhoneNumberMetadata.xml

This configuration file specifies phone number formats for countries and possibly for territories. Each country phone
number definition starts with the tag <territory id="country_name". For example, if you are configuring United
States phone data, you can search for <territory id="US" to find that configuration.

PolicyCenter uses possibleNumberPattern under generalDesc for validation of phone numbers. PolicyCenter
does not perform any of the stricter validations because the formats can change rapidly and a user can enter a mobile
number into a home phone field.

The formatting controls are in availableFormats. They use standard regex capture groups. The only sections you
need to configure are possibleNumberPattern and availableFormats.

See the comments at the beginning of the file and at the beginning of each <territory> section for more
information.

Change default phone localization

About this task

For the United States (US), the area code is defined in PhoneNumberMetaData. xml to display as three numbers
followed by a dash. For example, the area code 202 displays as 202-555-1234. You can change this default display
for the US, Canada, and any other NANPA countries defined in this file that rely on the US format. For example,
change the default to use parentheses, such as (202) 555-1234, as follows:

Procedure

1. In Guidewire Studio™, navigate in the Project window to configuration—config—phone and then double-click
PhoneNumberMetaData.xml to open the file in the editor.

2. Find the entry for the United States by searching for:
territory id="US"

3. In that element are two numberFormat elements. The second of these elements defines the pattern for parsing
that includes an area code. It includes a <format> element that defines the format of the string.

<numberFormat pattern="(\d{3})(\d{3})(\d{4})">
<format>$1-$2-$3</format>

4. Change this <format> element to use parentheses and a space, as follows:

<format>($1) $2-$3</format>

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

5. Open a command prompt from the PolicyCenter installation directory and run the following utility:

gwb genPhoneMetadata

6. Restart ClaimCenter to pick up this change.

Phone number data model

In Guidewire PolicyCenter, the Contact entity has the following fields that support phone numbers:
* PrimaryPhone
* FaxPhone
* FaxPhoneCountry
* FaxPhoneExtension
* HomePhone
* HomePhoneCountry
* HomePhoneExtension
* WorkPhone
* WorkPhoneCountry
* WorkPhoneExtension
The Person entity inherits all these fields, and, in addition, has the following fields that support phone numbers:
* CellPhone
* CellPhoneCountry
* CellPhoneExtension
For the listed entity fields:

» The phone country fields are typekeys that reference the PhoneCountryCode typelist, which provides the list of
ISO country codes for phone data.

* The extension fields define varchar columns.
These two types of fields are associated with the main phone column through the following columnParam
subelements:

* phonecountrycodeProperty
* extensionProperty
For example, in the XML text of the Contact.eti file, notice the following definitions.

<typekey desc="Home phone country." name="HomePhoneCountry" nullok="true"
typelist="PhoneCountryCode"/>

<column desc="Home phone number associated with the contact." name="HomePhone"
nullok="true" type="phone">
<columnParam name="phonecountrycodeProperty" value="HomePhoneCountry"/>
<columnParam name="extensionProperty" value="HomePhoneExtension"/>
</column>

<column desc="Home phone extension." name="HomePhoneExtension" nullok="true" type="varchar">
<columnParam name="size" value="60"/>
</column>

Phone number PCF widget

PCF widget GlobalPhoneInputSet provides a way to show phone-related fields in PolicyCenter. The phone-related
fields that you see in PolicyCenter depend on the following:

» Country information that the user selects

 Screen mode, which is editable or read-only

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

You initialize the GlobalPhoneInputSet widget by providing the InputSetRef with a PhoneOwner. You initialize a
PhoneOwner by providing a PhoneFields object.

Edit mode
If the screen is in edit mode, a PolicyCenter user has access to the following phone-related fields, set in the PCF
widget GlobalPhoneInputSet:

+ Country code

* National subscriber number

+ Extension

Note: The user-entered value of an extension can be no longer than seven characters. The length is
enforced in the validator expression for the field.

Read-only mode

If the screen is in read-only mode, a PolicyCenter user views previously entered phone-related information, the
format of which depends on the phone country code.

PhoneFields interface

PolicyCenter interface gw.api.phone.PhoneFields is a representation of a phone number object. It contains
properties for the following items:

* CountryCode

* NationalSubscriberNumber
* Extension

* PhoneType

In the base PolicyCenter, Guidewire provides class ContactPhoneDelegate as the default implementation class for
the PhoneFields interface. This class wraps the three phone columns into a ContactPhoneDelegate object if

provided with a Contact object and a PhoneType in the constructor. ContactPhoneDelegate sets the primary phone
value for the contact.

PhoneOwner interface

The interface gw.api.phone.PhoneOwner defines behavior for the phone number widget, such as availability,
editability, visibility, and targeted post-on-change behavior. The implementations in the base configuration are
StandardPhoneOwner and BusinessPhoneOwner. The main difference between the two classes is that
BusinessPhoneOwner provides an extra field for the phone extension.

Phone numbers in edit mode

International phone numbers begin with a country code and use the following format:

+phoneCountryCode phoneNumber extensionNumber

For ease of entering phone information, it is possible to configure the GlobalPhoneInputSet widget to show a list
of Region Code values in PolicyCenter from which the user can chose. For PolicyCenter to show the Region Code
drop-down list, the following must be true:

» Configuration parameter AlwaysShowPhoneWidgetRegionCode in config.xml must be set to true.
* The user must initially enter a plus sign in the phone number field.

If the user initially enters a plus sign (+) in the phone number field, the GlobalPhoneInputSet widget issues a post-
on-change event to expose a Region Code drop-down list. Application logic maps the region code to a country code
by using CountryCodeToRegionCode.xml and identifies the corresponding country. PolicyCenter formats the phone
number based on the user’s phone region and the country selected for the phone number. For example:

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

User phone region Phone number country PolicyCenter format

us us Domestic United States

us FR International French

FR FR Domestic French

FR us International United States

If a user enters a numeric phone number without first entering a country code, then PolicyCenter invokes only the
format action on a targeted post-on-change event. Also, PolicyCenter invokes only the format action if the country
code is the same as the user’s selected default, or, if none, the default configured for the server.

See also

* Configuration Guide

Phone numbers in read-only mode

The read-only phone number field of the GlobalPhoneInputSet widget formats phone numbers based on one of the
following:

* The default phone region selected by the user
* The default phone country code configured for the server

Users select a default phone region on the standard Preferences screen in PolicyCenter, available by clicking
Preferences on the Options (gear icon) menu. A user’s selection for default phone region overrides the default phone
region set for the server.

Configure the phone extension read-only label

About this task

If the user previously entered an extension for a phone number, in read-only mode you see a text label preceding the
extension number. In the base configuration, Guidewire defines this label to be the letter x. For example, a San
Francisco, California phone number with extension 123 displays in the detail view for a contact as the following
number:

415-555-1212 x123

Display property Java.PhoneUtil.FormatPattern.Extension (in file display.properties) defines this label. In
the base configuration, Guidewire defines this property for United States English as {8} x{1}. It is possible to
change the extension label by changing the property definition.

Procedure

1. Open Guidewire Studio for PolicyCenter.

2. In the Studio Project window, navigate to the following location:
configuration— config— Localizations—Resource Bundle 'display’

3. Double-click file display.properties to open the file in the editor.

4. Change the value of Java.PhoneUtil.FormatPattern.Extension to the desired value.

For example, change the value to the following:

{0} Ext.{1}
Result

If you make the suggested change, and, if the display language is United States English, the example phone number
displays as follows in read-only mode:

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

415-555-1212 Ext.123

See also

» “Display keys and localization” on page 31

* “Localizing display keys” on page 35

Converting phone numbers from previous formats

PolicyCenter provides a plugin interface, IPhoneNormalizerPlugin, that you can use to customize the conversion
of phone numbers from a format that does not match the format used in PolicyCenter. The plugin is called by the
Phone Number Normalizer work queue. The plugin is also called whenever an entity containing a phone number is
modified in PolicyCenter or restored from the archive.

See also

* “Phone number normalizer plugin” in the Integration Guide

* “Phone Number Normalizer work queue” in the System Administration Guide

chapter 19

Linguistic search and sort

You can configure PolicyCenter to perform search and sort operations in languages other than the default en_uUs.
PolicyCenter provides support for language-appropriate text search and sort for a single language.

Note: The base configuration of PolicyCenter provides free text search only in United States English.
You must configure Guidewire Solr Extension to be able to perform free text searches in languages
other than United States English. This configuration requires expertise in configuring Apache Solr.
For information on basic configuration of free-text search, see the Configuration Guide.

Understanding linguistic search and sort of character data

There are two primary ways to search for and sort character data:
* Treat the character data as binary code points and compare and sort the data numerically.

* Treat the character data linguistically. This approach applies specific collation rules to order words in a list that
reflect the commonly accepted practices and expectations for a particular language.

Linguistic search applies a specific collation to the character data. A collation is an overriding set of rules that
applies to the ordering and comparison of the data. Collation strength refers to the elements of the collation process
that the search and sort code applies to the data.
For example:
* Collation strength controls whether the search and sort code respects or ignores differences in case and accent on
a character, such as the leading character on a word.
* In the Japanese language, collation strength also controls whether the search and sort code respects or ignores the
differences between:
o Katakana and Hiragana
o Full-width and half-width Katakana character differences
PolicyCenter uses the value of configuration parameter DefaultApplicationLocale and the

language_LlanguageCode . xml and collations.xml configuration files to implement localized search and sort
functionality.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Note: PolicyCenter displays the default locale value when the current locale value is missing.
However, PolicyCenter always sorts by the current locale value. As a result, sorting of a localized
column of a list view can appear to be broken when the column has one or more untranslated values.

Effect of character data storage type on searching and sorting

Guidewire PolicyCenter stores character data in the following ways:
» Database storage
* In-memory storage

PolicyCenter handles searching and sorting of character data differently for these storage types.

Character data in the database

PolicyCenter writes most application data directly to the database. This action stores the data on a physical disk
storage system. Each discrete piece of data is an entry in a table column, with each table being organized by rows.
During a comparison and sort of data in the database, the database management system (DBMS) performs the
operations and applies rules that control these operations.

Character data in memory

PolicyCenter writes some application data to volatile memory devices, such as the local machine RAM memory.
PolicyCenter typically uses this kind of memory storage for the display of certain kinds of data in the user interface.
For example, PolicyCenter uses in-memory storage for drop-down lists and the results of list views that do not use
database queries. During a comparison and sort of data in memory, programming code provided in the base
configuration controls the operations.

Searching and sorting in configured languages

Your PolicyCenter installation provides support for searching and sorting for a single language. PolicyCenter reads
the localization code from the DefaultApplicationLocale configuration parameter, which you set in config.xml.
The default is United States English, en_US.

You set the value of DefaultApplicationLocale once, before you start the application server for the first time.
PolicyCenter stores this value in the database and checks the value at server startup. If the application server value
does not match a database value, then PolicyCenter throws an error and refuses to start.

IMPORTANT You must set the value of configuration parameter DefaultApplicationLocale before
you start the application server for the first time. You cannot change this value after you start the
application server without dropping the database.

Guidewire also provides support for language-appropriate searching and sorting for display keys for each supported
language code. You define and manage language characteristics in language_LlanguageCode . xml files. You define
these files for each localization file, such as 1language_en_US.xml. To access the localization folders, open
Guidewire Studio™ and navigate in the Project window to configuration— config— Localizations.

Each language_LlanguageCode . xml file contains a <GWLanguage> element. This element supports the following
subelements that you can use to configure the behavior of searching and sorting operations in the Guidewire
application:

* <SortCollation> — Element <SortCollation> has a strength attribute that you use to define the sorting
collation strength for this language. The exact meaning of the SortCollation strength attribute value depends
on the specific language.

* <LinguisticSearchCollation> — Element <LinguisticSearchCollation> supports a strength attribute that
you use to define the searching collation strength for a language.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

See also

* For information on <LinguisticSearchCollation>, see “Configuring Oracle search in
language languageCode.xml” on page 135.

* For information on <SortCollation>, see “Configuring database sort in language languageCode.xml” on
page 138.

* “Configuring search in the PolicyCenter database” on page 135

* “Configuring sort in the PolicyCenter database” on page 138

Configuring search in the PolicyCenter database

For a column to be eligible for inclusion in the database search algorithm, the supportsLinguisticSearch attribute
on that column must be set to true. Setting this column attribute to true marks that column as searchable and
supports case insensitive searches, regardless of which DBMS you use.

Note: Setting this attribute to true on a column makes it possible to do case-insensitive search on a
denormalized version of the column. Setting it to false enables binary search on the column itself, as
described in “Linguistic search and sort” on page 133. Setting this attribute does not affect language or
locale for searches. Using locale in searching and collation order are controlled by the configuration of
the user's locale and the strength of the LinguisticSearchCollation entry in the
language_LlanguageCode .xml file.

IMPORTANT You cannot use the supportsLinguisticSearch attribute with an encrypted column. If
you attempt to do so, the application server cannot start.

How Guidewire PolicyCenter handles searching of data depends on the database involved.

See also

¢ For information on the <column> element and the attributes that you can set on it, see the Configuration Guide.
* For information on LinguisticSearchCollation, see:

o “Searching and sorting in configured languages” on page 134

° “Configuring Oracle search in language languageCode.xml” on page 135

o “General search rules” on page 137

Searching and the Oracle database

To implement linguistic searching in Oracle, the database compares binary values that PolicyCenter modifies for
searching. For functional and performance reasons, PolicyCenter does not use Oracle collations.

* For primary, accent-insensitive searching, Guidewire uses the configurable Java class described in “Configuring
Oracle search in collations.xml” on page 136 to compute the comparison values. Guidewire also uses this Java
class to define the search semantics for searching in the Japanese and German languages.

 For secondary, case-insensitive searching, Guidewire transforms the search values to lower case.

Configuring Oracle search in language_languageCode.xml

Guidewire provides the ability to configure language-appropriate linguistic search capabilities through the
<LinguisticSearchCollation> element. This subelement of <GWLanguage> is defined in
language_LlanguageCode . xml. You use the strength attribute of this subelement to configure and control
specialized search behavior.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

IMPORTANT Any change to the <LinguisticSearchCollation> element in
language_LlanguageCode . xml requires a database upgrade. If you make a change to this element,
then you must restart the application server to force a database upgrade.

The meaning of the strength attribute depends on the specific language. In general, the settings mean the
following:

* A strength of primary considers only character weights. This setting instructs the search algorithms to consider
just the base, or primary letter, and to ignore other attributes such as case or accents. Thus, the collation rules
consider the characters ¢ and E to have the same weight. For more information on this attribute, see “Configuring
database sort in language languageCode.xml” on page 138.

* A strength of secondary, the default, considers character weight and accent differences, but not case
differences. Thus, the collation rules consider the characters e and € to be different and thus the rules treat them
differently. The collation rules do not, however, treat e and E differently.

To summarize, the strength attribute can take the following values, with the default being secondary.

Strength Search description

primary e accent-insensitive
e case-insensitive

secondary e accent-sensitive
e case-insensitive

Note: Localized search supports only two levels for the strength value, in contrast to localized
sorting, which supports three levels for the strength value.

The following language_ja.xml file is an example for Japanese with suggested settings.

<?xml version="1.0" encoding="UTF-8"?>
<Language xmlns="http://guidewire.com/language">
<GWLanguage code="ja" name="Japanese" typecode="ja">
<LinguisticSearchCollation strength="primary"/>
<SortCollation strength="primary"/>
</GWLanguage>
</Localization>

Configuring Oracle search in collations.xml

For the Oracle database, Guidewire provides specialized search rules through the use of a Java class that you can
configure. PolicyCenter exposes this Java class as a CDATA element in the <Database> element for Oracle in
collations.xml. To access collations.xml, open Guidewire Studio™ and navigate in the Project window to
configuration— config— Localizations.

In this file, search for the following:

<Database type="ORACLE">

;Béjavaclass> <![CDATA[...]]></DBJavaClass>

</Database>
Guidewire PolicyCenter uses this Java code as the source code for a Java class. In the base configuration, the
provided Java class defines:

* General rules for primary-strength searching in the database

* Specialized rules for searching in the Japanese language

» Specialized rules for searching in the German language

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

As defined in the comments in collations.xml, it is possible to modify the embedded GWNormalize Java class
directly to meet your business needs. It is useful to modify the GWNormalize class under the following
circumstances:

* You are using an Oracle database and either Japanese or German language strings

* You are using an Oracle database and primary, accent-insensitive search collation

General search rules

In the base configuration, PolicyCenter uses the following general rules as it performs a database search on a column
that is configured to support linguistic searching:

» All searches are case insensitive, regardless of the value of the strength attribute on
<LinguisticSearchCollation>.

PolicyCenter regards the characters e and E as the same.
» All searches take punctuation into account.
PolicyCenter regards O'Reilly and OReilly as different.

* All searches in which the strength attribute on <LinguisticSearchCollation> is set to primary ignore accent
marks.

PolicyCenter regards the characters e and & as the same.

* All searches in which the strength attribute on <LinguisticSearchCollation> is set to secondary take into
account any accent marks.

PolicyCenter regards the characters e and é as different.
PolicyCenter searches only database columns for which you set the supportsLinguisticSearch attribute to true.

General search rules for the Japanese language

In the base configuration, Guidewire provides specialized search algorithms specifically for the Japanese language.
Guidewire sets these rules in collations.xml, as described at the beginning of this topic. This Java class provides
the following behavior for searching in a Japanese-language database:

Search case Rule

Half-width/Full-width All searches in Japanese ignore the difference between half-width and full-width
Japanese characters.

Small/Large characters All searches in Japanese in which the strength attribute on
<LinguisticSearchCollation> is set to primary, meaning accent-insensitive, ig-
nore Japanese small/large letter differences in Katakana or Hiragana. Searches in
which this attribute is set to secondary take small/large letter differences into ac-
count.

Katakana and Hiragana All searches in Japanese ignore the difference between Katakana and Hiragana
characters. This type of search is known as kana-insensitive searching.

Long dash (—) All searches in Japanese ignore the long dash character.

Sound marks (** and °) All searches in Japanese in which the strength attribute on
<LinguisticSearchCollation> is set to primary ignore sound marks. Searches in
which this attribute is set to secondary take sound marks into account.

If you modify the contents of collations.xml or the embedded Java class, PolicyCenter forces a database upgrade
the next time the application server starts.

General search rules for the German language

In the base configuration on Oracle, Guidewire provides specialized search algorithms specifically for the German
language. Guidewire sets these rules through the use of a configurable Java class that it exposes as a CDATA element
in collations.xml.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

This Java class provides the following behavior for searching in a German-language database:

Search case Rule

Vowels with umlauts All searches in German compare as equal a vowel with an umlaut or the same vow-
el without the umlaut but followed by the letter e. Thus, all searches in German ex-
plicitly treat the following as the same value:

e dandae
e 6andoe
e (andue

German letter Eszett All searches in German treat the Eszett character 8 (also known as Sharp-S) the
same as the characters ss.

Searching and the SQL Server database

In SQL Server, the collations provided by the Windows operating system are effective in providing language-
appropriate searching. To work correctly, Guidewire requires that you create a SQL Server database with case-
insensitive collation. Guidewire uses this collation for all character data sorting and searching by default, as well as
to provide case-insensitive table and column names.

Through the linguistic search configuration, it is possible to specify a different collation for searching on columns
that support linguistic searching:

« If simple, case-insensitive searching meets your requirements, then configure collations.xml to select the same
collation as the database collation.

* If you need different search semantics, then configure the SQL Server entry in collations.xml for a primary
strength search collation, which will give you accent-insensitive searching.

The semantics of linguistic searching for SQL Server are those of the Windows collation selected from the
collations.xml file. The collation is based on the default language and linguistic search collation strength from
language_LlanguageCode . xml, in which secondary strength is the default. Microsoft controls the Windows
collation rules, not Guidewire.

With reference to the discussion about Japanese and German search rules on Oracle, the Windows collations
configured in the base configuration in collations.xml provide the following:

 Kana-insensitivity and width-insensitivity for Japanese collations
* Umlaut and Eszett handling in the German collations

If you are currently using SQL Server in those languages, your IT staff is mostly likely familiar with these issues.

Configuring sort in the PolicyCenter database

PolicyCenter handles the ordering of data as consistently as possible between database sorting and in-memory
sorting. PolicyCenter derives the collation to use for sorting from the following:

* The default localization code set in the configuration parameter DefaultApplicationLocale in config.xml.
* The collation strength setting. This value is set in the language_LanguageCode . xml file for the language.
PolicyCenter uses these values along with the database type to look up the collation in collations.xml.

Note: PolicyCenter uses in-memory sorting in the application interface for various elements, such as
drop-down lists and list views that do not result from queries. To perform in-memory sorting,
PolicyCenter uses a language-specific Collator object that is modified with the collation strength
setting for that language.

Configuring database sort in language languageCode.xml

For optional use, the <SortCollation> subelement of the <GWLanguage> element in 1anguage_LlanguageCode . xml
controls specialized sorting behavior. To access the localization files, open Guidewire Studio™ and navigate in the
Projects window to configuration—config— Localizations.

[3 GuIDEWIRE Guidewire PolicyCenter 10.1.2 Globalization Guide

The <SortCollation> element has a single strength attribute that determines collation strength—how
PolicyCenter sorting algorithms handle accents and case during the sorting of character data for the following:

* Sorting of in-memory data
* Sorting of data in the database
The strength attribute, which defaults to secondary, can take the following values:
* primary
* secondary
* tertiary
The specific meaning of the strength attribute depends on the language. In general:

* A strength of primary instructs the search and sort algorithms to consider just the base, or primary letter, and to
ignore other attributes, such as case or accents. With this setting, the collation rules consider the characters e and
E to have the same weight.

* A strength of secondary instructs the search and sort algorithms to consider character weight and accent
differences. This value is the default setting. With this setting, the collation rules consider the characters e and &
to be different and order them differently.

* A strength of tertiary instructs the search and sort algorithms to consider character weight, accent
differences, and case. With this setting, the collation rules consider the characters e and & and E to be different
and order them differently.

The following list describes these differences.

Strength Case-sensitive Accent-sensitive

primary No No
secondary No Yes
tertiary Yes Yes

Configuring database sort in collations.xml

Guidewire uses collations.xml as a lookup file. To access collations.xml, navigate in the Guidewire Studio
Projects window to configuration— config— Localizations. PolicyCenter uses the following definitions in this file to
look up the sort collation name and apply it:

* The application localization code
* The strength attribute value from the <SortCollation> element in language_LanguageCode .xml
* The database management system (DBMS) type

PolicyCenter primarily uses these values to look up the sort collation. For example, suppose that the following are
all true:

* The database is Oracle.
* The user language is German.
e The strength value of SortCollation in language_de_DE.xml is set to secondary.

PolicyCenter then looks at the following for instructions on how to set NLS_SORT for Oracle sessions and sets it to
GERMAN_CI.

<Database type="ORACLE">

<Collation locale="de" primary="GERMAN_AI" secondary="GERMAN_CI" tertiary="GERMAN"/>

Collation in QuickStart (H2 development) database

To specify collation in file collations.xml for an H2 database, use a standard locale name format, for example
de_DE for Germany, ja_JP for Japan.

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Determining the order of typekeys

PolicyCenter uses the language collation rules defined in language_LlanguageCode.xml as part of determining the
ordering of typekeys from the database. To sort typekeys, PolicyCenter applies the following criteria:

If there is no . sort file defined for the typelist and language:
* PolicyCenter uses the priority associated with each typekey in its typelist to order the typekeys by priority order.

* For typekeys with the same priority, PolicyCenter applies the language collation rules to the typekey display
names.

If there is a . sort file defined for the typelist and language:
* PolicyCenter uses the order of the typekeys specified in that file.

* For typekeys from the typelist that are not defined in the . sort file, PolicyCenter orders them after the defined
typekeys, applying the language collation rules to these typekey display names.

Note: You typically need the . sort file only if you are supporting Japanese with other languages on
the same server. Otherwise, the preferred technique is to specify the sort order by defining priority in
the typelist and language collation in language_LlanguageCode .xm1.

PolicyCenter applies the collation rules to the typekey columns in database query ORDER BY clauses that sort
database query results. File collations.xml contains multiple language collations because PolicyCenter supports
storing typekey values in multiple languages in one database, enabling PolicyCenter to sort the typekey names

correctly for each language. This storage scheme enables users with different language settings to see different
translations of a typekey.

See also

* For information on . sort files, see “Setting a localized sort order for localized typecodes” on page 38.
* For information on setting typecode priority, see the Configuration Guide.

chapter 20

Configuring national field validation

Field validation in PolicyCenter generally relies on regular expressions and input masks to validate data that users
enter in specific fields. Field validators define specific regular expressions and input masks. Sometimes, field
validation varies by country. For example, many countries issue taxpayer IDs, but the validation rules for taxpayer
IDs vary by country.

See also

 Configuration Guide

About field validation

Field validators provide basic validation for data that users enter in specific fields.
* Field validators apply only to the value in a single field.
* Field validators do not enforce the uniqueness of values in that field.
* Field validators generally ignore relationships between values in that field and values in other fields.

A field validator typically defines a regular expression, which is a pattern of characters and special symbols that a
value entered in a text field must match to be valid. Optionally, field validators can define an input mask, which
provides a visual indication to the user of the expected format for values to enter in the field.

Note: You cannot define an input mask for input of Japanese characters—katakana and hiragana.

You can configure national field validation for fields of data type LocalizedString only. In addition, any entity
definition that contains localized string fields must have an additional field to store a country code associated with
each entity instance. PolicyCenter applies national field validation based on the value of the country code associated
with specific entity instances.

You configure field validation by editing various fieldvalidtors.xml files under the fieldvalidators folder:

* You define global field validators once in the fieldvalidtors.xml file located in the root of the
fieldvalidators folder.

* You define national field validators in fieldvalidtors.xml files located in country-specific folders in the
fieldvalidators folder.
See also

» “Localizing field validators for national field validation” on page 142

* Configuration Guide

Guidewire PolicyCenter 10.1.2 Globalization Guide E GUIDEWIRE

Localizing field validators for national field validation

About this task

You define national field validators in fieldvalidtors.xml files located in country-specific folders in the
fieldvalidators folder. Country-specific folder names must match typecodes from the Country typelist.

Procedure

In Guidewire Studio, navigate in the Project window to configuration— config—fieldvalidators.
Right-click fieldvalidators, and then select New—package from the context menu.
Enter the typecode from the Country typelist for the country, and then click OK.

Do Dd =

Copy the fieldvalidators.xml file from the root of the fieldvalidators package to the new country-specific
package.

5. Modify the copy of fieldvalidators.xml that you just made to define national field validators for the
country.

Gosu field validation

An advanced kind of field validator defines a Gosu class that handles field validation programmatically. You can
develop Gosu classes that act as field validators. PolicyCenter provides a class framework for developing Gosu-

based field validators, located in the gw.api.validation package. Gosu-based field validators must extend the

abstract FieldvalidatorBase class.

Enabling national field validation for phone data
PolicyCenter uses the Gosu class gw.api.validation.PhoneValidator as the default mechanism to validate
phone number correctness.

To enable the new PhoneValidator validation functionality, you configure fieldvalidators.xml with the fully
qualified name of the Gosu class. For example:
<ValidatorDef description="Validator.Phone"
name="LocalizedPhoneValidator"

validation-type="gosu"
value="gw.api.validation.PhoneValidator"/>

As shown in the previous example, you must set the validation type to gosu.

The validator does not trigger validation unless the associated phone country is set. This trigger functionality
provides backwards compatibility with old data.

See also

* “Configuring and localizing phone information” on page 127

	Globalization Guide
	Contents
	Guidewire Documentation
	About PolicyCenter documentation
	Support

	Understanding globalization
	Dimensions of globalization
	Shortcomings of the two traditional globalization dimensions
	Globalization dimensions in Guidewire applications

	Selecting language and regional formats in PolicyCenter
	Configuration files used for globalization
	Configuration parameters for general globalization features

	Working with languages
	About language fallback
	Enabling display languages
	General language enablement considerations
	Setting the primary language and default locale
	Setting the default currency
	Enable a display language
	View supported language files in Studio

	Setting the primary display language
	Selecting a personal language preference
	Upgrading display languages

	Localized printing
	Printing with non-standard fonts
	Localized printing in a Windows environment
	Register the fonts with Apache FOP
	Register FOP configuration and font family with PolicyCenter
	Testing your configuration

	Localized printing in a Linux environment
	Download and install the required fonts
	Configure the font
	Register the font with Apache FOP
	Register FOP configuration and font family with PolicyCenter
	Test your configuration

	Localizing PolicyCenter string resources
	Overview of string resources
	Display keys and localization
	Typecodes and localization
	Workflow step names and localization

	Exporting and importing string resources
	Exporting localized string resources with the command-prompt tool
	Importing localized string resources with the command-prompt tool
	Localizing string resources by exporting and importing files

	Localizing display keys
	PolicyCenter and the master list of display keys
	Localize display keys by using the Display Key editor
	Identifying missing display keys
	Working with display keys for later translation

	Localizing typecodes
	Localize typecodes in a typelist properties file
	Setting a localized sort order for localized typecodes
	Set the sort order for typecodes in a typelist
	Sort order, typecode order, and typekey priority
	Sort prefectures in alphabetic order
	Example of state typelist sort file elements

	Accessing localized typekeys from Gosu

	Localizing product model string resources
	Translating product model strings in Product Designer
	Localizing coverage term options

	Localizing PCF fields
	Setting the default width for input field labels
	Localizing hints for date and time fields

	Working with a localized Guidewire Studio
	Specifying a language for Studio
	Specify a language for Studio in the Settings dialog

	Viewing Unicode characters in Studio
	Elements of Studio that support viewing Unicode
	Set Studio to view Unicode characters

	Localized Gosu error messages
	Localizing rule set names and descriptions
	Setting a language for a block of Gosu code
	Specifying an ILocale object for a language type
	Methods on gw.api.util.LocaleUtil

	Localizing administrative data
	Specifying localized columns in entities
	Localization attributes

	Localization tables in the database
	System table localization
	Product Designer System Table editor
	Localizable tables in PolicyCenter
	Localizing system table XML files

	Localizing workflow
	Set the workflow language or region
	Localizing workflow step names
	Translate workflow step names in Studio
	Export workflow step names as string resources for translation

	Creating a language-specific workflow subflow
	Methods that create a language-specific subflow
	Create a child subflow

	Localize Gosu code in a workflow step

	Localizing templates
	Creating localized documents, emails, and notes
	Create language-specific folders
	Copy template content files
	Localizing template descriptor files
	Localizing document descriptor files
	Localizing email and note descriptor files

	Localize template files
	Localizing documents, emails, and notes in PolicyCenter
	Create a localized document
	Create a localized email
	Create a localized note

	Document localization support

	Working with regional formats
	Configuring regional formats
	Overview of the International Components for Unicode (ICU) library
	Locale codes, localization_localeCode.xml, and the ICU library
	Java locale codes and the ICU library
	Add a locale code to the LocaleType typelist

	Configuring a localization_localeCode.xml file
	<GWLocale> XML element of a localization file
	<DateFormat> and <TimeFormat> elements of a localization file

	Setting the default application locale for regional formats
	Setting regional formats for a block of Gosu code
	Configuring name information
	Names in PolicyCenter
	Read-only and editable name information
	Name owners
	Modal name PCF files

	Configuring name data and fields for a region
	Configuring the Localization XML file for names
	PCFMode attribute of the NameFormat element
	Text format mode attribute of the NameFormat element
	Visible fields attribute of the NameFormat element

	Setting up additional region and name configurations
	Add a name format for a region
	Extend the Contact entity with a new name column

	Modal PCF files and name configuration
	Name owners
	NameFormatter class
	NameOwnerFieldId class

	Working with Kanji fields
	Enabling indexes for Kanji fields
	Enable Kanji indexes in PolicyCenter
	Enable Kanji indexes in ContactManager

	Working with the Japanese Imperial Calendar
	Configuring Japanese dates
	Set the Japanese Imperial Calendar as the default for a region
	Set fields to display the Japanese Imperial Calendar
	Set keyboard shortcut for Imperial Era

	Configuring geographic data
	Configuring address formats by country
	Setting the default application country
	Configuring jurisdiction information
	Configuring state information
	State typelist abbreviation methods
	StateAbbreviation typelist abbreviation method

	Zone configuration
	Overview of configuring zones
	Location of zone configuration files
	Zone configuration files
	<Zones> element
	<Zone> element
	<ZoneCode> element
	<Links> element
	<AddressZoneValue> element

	Importing address zone data
	Basic zone types
	ZoneType typelist
	Add a new zone type

	Configuring address information
	Overview of global addresses
	Overview of Country XML files
	Overview of modal address PCF files

	Addresses and the AddressFormatter class
	Addresses and states or jurisdictions
	Address configuration files
	Configuring address data and field order for a country
	Configuring the Country XML file
	Visible fields attribute of the country XML file
	PCFMode attribute of the country XML file
	Postal code display key attribute of the country XML file
	State display key attribute of the country XML file

	Additional country and address configurations

	Address modes in page configuration
	Address owners
	AddressOwnerFieldId class
	Address autocompletion and autofill
	Configuring autofill and autocompletion in address-config.xml
	Configuring autofill and autocompletion in a PCF file
	Add address autocomplete

	Address automatic completion and autofill plugin

	Example: Add a country with a new address field
	Basic configuration of the suburb field
	Add a suburb field to the GlobalAddress entity
	Make changes so suburb field uses autofill
	Add a New Zealand locale type and suburb zone type
	Add New Zealand localization configuration files
	Add a New Zealand folder under the geodata folder
	Add a New Zealand field validator file
	Add typecodes for currency and jurisdiction
	Configure the Currency XML file for New Zealand currency
	Edit supporting user interface files and add New Zealand suburb field
	Add a New Zealand suburb field to the user interface
	Restart Studio and modify ContactManager

	Additional information for configuring New Zealand localization

	Configuring and localizing phone information
	Configuring area codes and phone number validation
	Working with PhoneNumberMetadata.xml
	Change default phone localization

	Phone number data model
	Phone number PCF widget
	PhoneFields interface
	PhoneOwner interface
	Phone numbers in edit mode
	Phone numbers in read-only mode
	Configure the phone extension read-only label

	Converting phone numbers from previous formats

	Linguistic search and sort
	Effect of character data storage type on searching and sorting
	Searching and sorting in configured languages
	Configuring search in the PolicyCenter database
	Searching and the Oracle database
	Configuring Oracle search in language_languageCode.xml
	Configuring Oracle search in collations.xml
	General search rules

	Searching and the SQL Server database

	Configuring sort in the PolicyCenter database
	Configuring database sort in language_languageCode.xml
	Configuring database sort in collations.xml
	Determining the order of typekeys

	Configuring national field validation
	Localizing field validators for national field validation
	Gosu field validation

