
Guidewire PolicyCenter ™

Best Practices Guide

Release 10.1.2

© 2021 Guidewire Software, Inc.
For information about Guidewire trademarks, visit http://guidewire.com/legal-notices.
Guidewire Proprietary & Confidential — DO NOT DISTRIBUTE

Product Name: Guidewire PolicyCenter
Product Release: 10.1.2
Document Name: Best Practices Guide
Document Revision: 14-June-2021

http://guidewire.com/legal-notices

Contents

Guidewire Documentation .6
About PolicyCenter documentation .6
Support .8

1 Overview of best practices. 9

2 Data model best practices .11
Entity best practices . 11

Observe entity declaration naming conventions . 11
Add a suffix to entity extensions .12
Use singular words for field names except for arrays .12
Add ID as a suffix to column names for foreign keys .12

Typelist best practices .13
Observe typelist naming conventions .13
Add a suffix to new typelists and typecode extensions .13
Do not rely on implicit conversion of typecodes to strings .14

Script parameter best practices .14
Other data model best practices .14
Data model best practices checklist. .14

3 User interface best practices . 15
Page configuration best practices .15

Modify base PCF files whenever possible. .15
Add a suffix to new PCF files to avoid name conflicts .15
Avoid using Gosu code in PCF files. .15

Display keys best practices .16
Use display keys to display text. .16
Use existing display keys whenever possible. .16
Observe display key naming conventions .16
Add a suffix to new display keys to avoid name conflicts .16
Organize display keys by page configuration component .17

User interface performance best practices .17
Avoid repeated calculations of expensive widget values .17
Avoid expensive calculations of widget properties .18
Use application permission keys for visibility and editability .18

User interface best practices checklist .19

4 Rules best practices . 21
Rules naming best practices .21

Observe rule naming conventions .21
Rule naming summary principles .22
Root rules naming conventions. .22
Parent and child rules naming conventions .23

Observe operating system length restrictions on rule names .23
Get and display rule names in messages .24
Assign a dedicated rules librarian to manage rule names. .24

Rules performance best practices .24
Purge unused and obsolete rules before upgrading .24

Rules best practices checklist .24

Guidewire PolicyCenter 10.1.2 Best Practices Guide

3

5 Gosu language best practices . 27
Gosu naming and declaration best practices .27

Observe general Gosu naming conventions. .27
Omit type specifications with variable initialization .28
Add a suffix to functions and classes to avoid name conflicts .28
Declare functions Private unless absolutely necessary .28
Use public properties instead of public variables .28
Do not declare static scope for mutable variables. .29
Use extensions to add functions to entities .29
Match capitalization of types, keywords, and symbols .29

Gosu commenting best practices. .30
Comment placement .30
Block comments .30
Javadoc comments. .30
Single-line comments. .30
Trailing comments .31
Using comment delimiters to disable code .31

Gosu coding best practices. .31
Guidewire internal methods .32
Use whitespace effectively .32
Use parentheses effectively. .32
Use curly braces effectively .33
Program defensively against conditions that can fail .33

Use case-insensitive comparisons .33
Check for null values .33
Allow default null-safe property access .34
Usage of explicit null-safe operators .34
Check boundary conditions .34
Use structured exception handling .34

Omit semicolons as statement delimiters .34
Observe null safety with equality operators. .35

Rewrite comparison operators to avoid the equals method .35
Use typeis expressions for automatic downcasting. .35
Observe loop control best practices .36

Implement conditional operators in loop conditions correctly. .36
Interrupt loop execution as early as possible .36

Return from functions as early as possible .37
Use gw.api.util.DateUtil instead of java.util.Date. .37

Gosu performance best practices .38
Consider the order of terms in compound expressions .38
Avoid repeated method calls within an algorithm. .39
Remove constant variables and expressions from loops .39
Avoid doubly nested loop constructs .39
Pull up multiple performance intensive method calls .40
Be wary of dot notation with object access paths .41
Avoid code that incidentally queries the database .41
Use comparison methods to filter queries .42
Use comparison methods instead of the Where method .42
Use Count properties on query builder results and find queries .43
Use activity pattern codes instead of public IDs in comparisons .44
Create single plugin instance. .44

Gosu template best practices .45
Gosu best practices checklist .45

Guidewire PolicyCenter 10.1.2 Best Practices Guide

4

6 Upgrade best practices . 47
Upgradability best practices .47

Add minor changes directly to base files .47
Copy base files to add major changes. .47
Copy base functions to make major changes .48
Switching from minor to major changes .48

Upgrade best practices checklist .48

7 Rating Management best practices . 49
Rating Management component naming conventions best practices .49
Rate book edition naming conventions best practices .50
Rate routine step naming conventions best practices .51
Rating Management best practices checklist .51

Guidewire PolicyCenter 10.1.2 Best Practices Guide

5

Guidewire Documentation

About PolicyCenter documentation
The following table lists the documents in PolicyCenter documentation:

Document Purpose

InsuranceSuite Guide If you are new to Guidewire InsuranceSuite applications, read the InsuranceSuite Guide for
information on the architecture of Guidewire InsuranceSuite and application integrations. The
intended readers are everyone who works with Guidewire applications.

Application Guide If you are new to PolicyCenter or want to understand a feature, read the Application Guide. This guide
describes features from a business perspective and provides links to other books as needed. The
intended readers are everyone who works with PolicyCenter.

Upgrade Guide Describes the overall upgrade process, and describes how to upgrade your configuration and
database. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations.

Configuration Upgrade Tools
Guide

Describes the tools and functionality provided by the Guidewire InsuranceSuite Configuration
Upgrade Tools. The intended readers are implementation engineers who must merge base application
changes into existing application extensions and integrations. Visit the Guidewire Community to
access the Configuration Upgrade Tools Guide, which is available for download, separately from the
main documentation set, with the Configuration Upgrade Tools.

Installation Guide Describes how to install PolicyCenter. The intended readers are everyone who installs the application
for development or for production.

System Administration Guide Describes how to manage a PolicyCenter system. The intended readers are system administrators
responsible for managing security, backups, logging, importing user data, or application monitoring.

Configuration Guide The primary reference for configuring initial implementation, data model extensions, and user
interface (PCF) files for PolicyCenter. The intended readers are all IT staff and configuration engineers.

PCF Format Reference Describes PolicyCenter PCF widgets and attributes. The intended readers are configuration engineers.
See the Configuration Guide

Data Dictionary Describes the PolicyCenter data model, including configuration extensions. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Security Dictionary Describes all security permissions, roles, and the relationships among them. The dictionary can be
generated at any time to reflect the current PolicyCenter configuration. The intended readers are
configuration engineers.

Globalization Guide Describes how to configure PolicyCenter for a global environment. Covers globalization topics such as
global regions, languages, date and number formats, names, currencies, addresses, and phone
numbers. The intended readers are configuration engineers who localize PolicyCenter.

Rules Guide Describes business rule methodology and the rule sets in Guidewire Studio for PolicyCenter. The
intended readers are business analysts who define business processes, as well as programmers who
write business rules in Gosu.

Guidewire Contact Management
Guide

Describes how to configure Guidewire InsuranceSuite applications to integrate with ContactManager
and how to manage client and vendor contacts in a single system of record. The intended readers are
PolicyCenter implementation engineers and ContactManager administrators.

Best Practices Guide A reference of recommended design patterns for data model extensions, user interface, business
rules, and Gosu programming. The intended readers are configuration engineers.

Integration Guide Describes the integration architecture, concepts, and procedures for integrating PolicyCenter with
external systems and extending application behavior with custom programming code. The intended

Guidewire PolicyCenter 10.1.2 Best Practices Guide

6

Document Purpose
readers are system architects and the integration programmers who write web services code or
plugin code in Gosu or Java.

REST API Client Guide Describes how to use the InsuranceSuite REST API Client to make outbound HTTP calls to internal or
third-party REST services.

Java API Reference Javadoc-style reference of PolicyCenter Java plugin interfaces, entity fields, and other utility classes.
The intended readers are system architects and integration programmers.

Gosu Reference Guide Describes the Gosu programming language. The intended readers are anyone who uses the Gosu
language, including for rules and PCF configuration.

Gosu API Reference Javadoc-style reference of PolicyCenter Gosu classes and properties. The reference can be generated
at any time to reflect the current PolicyCenter configuration. The intended readers are configuration
engineers, system architects, and integration programmers.

ISBTF and GUnit Testing Guide Describes the tools and functionality provided by InsuranceSuite for testing application behavior
during an initial implementation or an upgrade. The guide covers functionality related to Behavior
Testing Framework, GUnit, and Gosu functionality designed specifically for application testing. There
are two sets of intended readers: business analysts who will assist in writing tests that describe the
desired application behavior; and technical developers who will write implementation code that
executes the tests.

Glossary Defines industry terminology and technical terms in Guidewire documentation. The intended readers
are everyone who works with Guidewire applications.

Advanced Product Designer
Guide

Advanced Product Designer is a tool that helps you, a business user, design, simulate, and deploy an
insurance product. The intended readers are business analysts who understand insurance products,
business systems analysts who liaise between business analysts and IT, project managers, and IT who
provides technical expertise in areas such as programming, testing, and databases.

Product Model Guide Describes the PolicyCenter product model. The intended readers are business analysts and
implementation engineers who use PolicyCenter or Product Designer. To customize the product
model, see the Product Designer Guide.

Product Designer Guide Describes how to use Product Designer to configure lines of business. The intended readers are
business analysts and implementation engineers who customize the product model and design new
lines of business.

REST API Framework Describes the Guidewire InsuranceSuite framework that provides the means to define, implement,
and publish REST API contracts. It also describes how the Guidewire REST framework interacts with
JSON and Swagger objects. The intended readers are system architects and integration programmers
who write web services code or plugin code in Gosu or Java.

Conventions in this document
Text style Meaning Examples

italic Indicates a term that is being defined,
added emphasis, and book titles. In
monospace text, italics indicate a variable to
be replaced.

A destination sends messages to an external system.
Navigate to the PolicyCenter installation directory by running the
following command:

cd installDir

bold Highlights important sections of code in
examples.

for (i=0, i<someArray.length(), i++) {
 newArray[i] = someArray[i].getName()
}

narrow bold The name of a user interface element, such
as a button name, a menu item name, or a
tab name.

Click Submit.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

7

Text style Meaning Examples

monospace Code examples, computer output, class and
method names, URLs, parameter names,
string literals, and other objects that might
appear in programming code.

The getName method of the IDoStuff API returns the name of the
object.

monospace italic Variable placeholder text within code
examples, command examples, file paths,
and URLs.

Run the startServer server_name command.
Navigate to http://server_name/index.html.

Support
For assistance, visit the Guidewire Community.
Guidewire customers

https://community.guidewire.com

Guidewire partners
https://partner.guidewire.com

Guidewire PolicyCenter 10.1.2 Best Practices Guide

8

https://community.guidewire.com
https://partner.guidewire.com

chapter 1

Overview of best practices

Best practices are recommended principles and practices that help ensure a successful project implementation.
Following the best practices ensures quality, predictability, and security for InsuranceSuite applications. These
recommendations focus on application development, and cover areas such as defining a data model, designing the
user interface, and writing Gosu code.
Adhering to the best practices also helps facilitate a more seamless upgrade to future product releases or a transition
to Guidewire Cloud. For more recommended best practices, see “Guidewire Cloud Standards” on the Guidewire
Documentation site.

Overview of best practices 9

https://docs.guidewire.com/
https://docs.guidewire.com/

Guidewire PolicyCenter 10.1.2 Best Practices Guide

10 chapter 1: Overview of best practices

chapter 2

Data model best practices

The PolicyCenter data model comprises metadata definitions of data entities that persist in the PolicyCenter
application database. Metadata definition files let you define the tables, columns, and indexes in the relational
database that supports your application. Typelist definitions let you define sets of allowed codes for specific typekey
fields on entities.

Entity best practices
You can change the base data model of PolicyCenter to accommodate your business needs with data model
extensions. Extensions let you add fields to existing data entities and add entirely new data entities to the data model
of your PolicyCenter application. PolicyCenter uses the data model and your extensions to create and manage the
tables, columns, and indexes in the relational database that supports your application.
As a best practice, Guidewire recommends that you edit the metadata definition files of the data model by using the
Data Model Extensions editor in Guidewire Studio.

See also

• Configuration Guide

Observe entity declaration naming conventions
Entity declarations have three names: a metadata definition file name, an entity attribute name, and a displayName
attribute name. Generally, entity declaration names begin with a capital letter. Medial capitals separate words in
compound entity names.
Entity declaration names differ with respect to allowing a space to separate words in compound entity names and
with respect to requiring a suffix. displayName attribute names permit spaces to separate words. Metadata definition
file names and entity attribute names do not. Unlike the other entity declaration names, metadata definition file
names require a three letter suffix. These suffixes include .eti, .eix, and .etx.
Metadata definition file names and entity attribute names are required programmatic names. They are for use in the
Gosu programming language. These names prohibit spaces altogether. In addition, the base of a metadata definition
file name must match the value of the corresponding entity attribute name.
While displayName attribute names are optional, Guidewire recommends that you use such names when two
conditions are true. If you create a custom entity and the programmatic entity declaration name for the entity
exceeds one word, use a displayName attribute name. For example, an entity with an entity attribute name of
Activity does not require a displayName attribute name. However, consider a displayName attribute name when
you have an entity attribute name such as ContactAddress or AllEscalatedActivitiesClaimMetric. In these

Data model best practices 11

cases, use Contact Address and All Escalated Activities Claim Metric as respective displayName attribute
names. The graphical user interface uses the displayName attribute name when displaying the corresponding entity.

Add a suffix to entity extensions
In future releases, Guidewire may add or change base entities. If you make your own changes to entities, there is the
possibility of a naming conflict with one of these future updates. For example, you may add new entities, or new
properties to existing entities. To avoid possible naming conflicts, Guidewire recommends that you append the
suffix _Ext to your new entities and properties.
If you add a new entity, add _Ext to the endings of entity names so that Guidewire Studio and the Data Dictionary
list them next to any entities that they extend. For example, CreditHistory_Ext. The property names in your new
entity do not need the suffix _Ext because the name of the entity already has the _Ext suffix.
If you add new properties to an existing Guidewire entity, add the _Ext suffix to their names. Follow this
recommendation for properties, and also for virtual properties and functions added through entity enhancements.

Note: Because PolicyCenter automatically prefixes extension table names with pcx_, if you run into
limits on the length of the table name, you can consider removing the _Ext suffix from the table name.

As an example of property extensions to a base entity, the following sample metadata file extends the base Policy
entity with an additional property (column) and an additional typekey.
<extension entityName="Policy">
 ...
 <column desc="Description of the column"
 name="MyCustomColumn_Ext"
 nullok="true"
 default="abc"
 type="varchar"
 <columnParam
 name="size"
 value="60" />
 </column>

 <typekey desc="Description of the typekey"
 name="MyCustomTypekey_Ext"
 typelist="myCustomTypeList_Ext)"
 nullok="true" />
 ...
</extension>

Use singular words for field names except for arrays
Guidewire recommends that you name most fields with a singular word such as Phone or Age. However, because
array fields reference a list of objects, Guidewire recommends that you name them with a plural word.
For example, Policy.CurrentRoleAssignment and Policy.CorePolicyNumber are single fields on a Policy
entity, but Policy.RiskNotes is an array of multiple notes. Also, for arrays fields that are extensions, make the
primary name plural and not the Ext prefix or suffix. For example, use Ext_MedTreatments or
MedTreatments_Ext, and not MedTreatment_Exts.

Add ID as a suffix to column names for foreign keys
Guidewire recommends that you add ID as a suffix to the column names of foreign keys. By default, the column
name of foreign keys have the same name as the foreign key names. Use the columnName attribute of foreignkey
elements to override their default column names. For example:
<foreignkey
 columnName="PolicyID"
 ...
 name="Policy"/>

Adding the suffix ID to the column names of foreign keys helps database administrators identify columns in the
database that Guidewire uses as foreign keys.
If you add a foreign key as an extension to a base entity, follow the best practice of adding a prefix or suffix to the
name. For example:

Guidewire PolicyCenter 10.1.2 Best Practices Guide

12 chapter 2: Data model best practices

<foreignkey
 columnName="Policy_ExtID"
 ...
 name="Policy_Ext"/>

Typelist best practices
A typelist represents a set of allowed values for specific fields on entities in the data model. A typecode represents
an individual value within a typelist. A typecode comprises:
• A code that the database stores as a column value
• A name that the user interface displays
• A priority setting that drop-down lists use to order they typecode names that they display

As a best practice, Guidewire recommends that you edit typelist definitions by using the Typelist editor in
Guidewire Studio.

See also

• Configuration Guide

Observe typelist naming conventions
The components of a typelist have the following naming conventions:

Typelist compo‐
nent

Naming conventions Example

Typelist Mixed case, with the first letter uppercase, and with the first letter of each internal
word capitalized

ActivityCategory

Code Only lowercase letters. Underscores (_) separate words. approval_pending

Name Each word in a name begins with a capital letter. Spaces separate words. Approval Pending

Add a suffix to new typelists and typecode extensions
In future releases, Guidewire may add or change base typelists. If you make your own changes to typelists, there is
the possibility of a naming conflict with one of these future updates. For example, you may add new typelists, or
new typecodes to existing typelists. To avoid possible naming conflicts, Guidewire recommends that you append the
suffix _Ext to your new typelists and typecodes.
If you add a new typelist, its typecode names do not need the suffix _Ext because the name of the typelist already
has the _Ext suffix.
If you add new typecodes to an existing base Guidewire typelist, add the _Ext suffix to their names.
As an example of a new typelist, name one that represents types of medical procedures
MedicalProcedureType_Ext. Name the typecodes in your new typelist without the suffix _Ext.
As an example of new typecodes in a base typelist, the following AddressType typelist has a new typecode for
service entrances.
Code Name Description Priority Retired
-------------------- ---------------- ----------- -------- -------
billing Billing Billing -1 false
business Business Business -1 false
home Home Home -1 false
other Other Other -1 false
service_entrance_Ext Service Entrance Service Entrance -1 false

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Data model best practices 13

Do not rely on implicit conversion of typecodes to strings
Guidewire recommends that you do not send typecodes as arguments to display keys, but explicitly send the Name
properties of typekey.

Script parameter best practices
The following are recommendations when working with script parameters:
• In future releases, Guidewire may add new script parameters. If you create your own script parameters, there is

the possibility of a naming conflict with one of these future updates. To avoid possible naming conflicts,
Guidewire recommends that you append the suffix _Ext to the names of your new script parameters.

• Create an enhancement property on script parameters with the same name as the script parameter itself, including
the _Ext suffix. Create this enhancement property on a custom enhancement under your own package.

Other data model best practices
The following are additional recommendations when extending the data model:
• Always add an informative description for all new entities, properties, typelists, and typecodes.
• Use the defined text data types (for example, shorttext, mediumtext, and longtext) instead of varchar. You

may choose to use varchar if a fixed width is known from or required by an external system.

Data model best practices checklist
Use the following checklist before you complete your data model configuration tasks to ensure that your data model
follows Guidewire best practices.

Best practice to follow Best practice was followed

“Observe entity declaration naming conventions” on page 11

“Add a suffix to entity extensions” on page 12

“Use singular words for field names except for arrays” on page 12

“Add ID as a suffix to column names for foreign keys” on page 12

“Observe typelist naming conventions” on page 13

“Add a suffix to new typelists and typecode extensions” on page 13

Guidewire PolicyCenter 10.1.2 Best Practices Guide

14 chapter 2: Data model best practices

chapter 3

User interface best practices

PolicyCenter uses page configuration format (PCF) files to render the PolicyCenter application. PCF files contain
metadata definitions of the navigation, visual components, and data sources of the user interface. Display keys
provide the static text that visual components of the user interface display.

Page configuration best practices
You can change the user interface of the PolicyCenter application by adding, changing, and removing PCF files
from the configuration of your PolicyCenter instance. As a best practice, Guidewire recommends that you edit PCF
files by using the Page Configuration (PCF) editor in Guidewire Studio.

See also

• Configuration Guide

Modify base PCF files whenever possible
Modify the base configuration files wherever they can be modified. Create new files only when absolutely
necessary.

Add a suffix to new PCF files to avoid name conflicts
Every page configuration file in your PolicyCenter instance must have a unique file name. The location of page
configuration files within the folder structure of page configuration resources does not ensure uniqueness. To avoid
future naming conflicts when Guidewire adds or changes base page configurations, Guidewire recommends that you
append the suffix _Ext to the names of your page configuration files.
For example, name a new list view for contacts on a policy PolicyContacts_ExtLV.

Avoid using Gosu code in PCF files
Avoid including large blocks of Gosu code within the <Code> element in PCF files for the following reasons:
• Code in a particular PCF file is not reusable.
• You cannot debug code that is defined in a PCF file.
• Large amounts of code can complicate merging of PCF files during an upgrade.

User interface best practices 15

Display keys best practices
A display key represents a single piece of user-viewable text. A display key comprises:
• A name to use in PCF files and Gosu code, where you want to display textual information
• A text value to display in place of the name, for each locale installed in your PolicyCenter instance

As a best practice, Guidewire recommends that you edit your display key definitions by using the Display Keys
editor in Guidewire Studio.

See also

• Configuration Guide
• Globalization Guide

Use display keys to display text
Define display keys for any text that you display to users through the PolicyCenter user interface or in log messages.
Do not use hard-coded String literals. Display keys help you localize your configuration of PolicyCenter with
translations for specific languages.

Use existing display keys whenever possible
Before you create a new display key, search the existing display keys to find one with the text that you want. In
Guidewire Studio, open the display_localeCode.properties file for the language you are using. Then, type the
word or phrase you want. The Display Keys editor navigates to and highlights display keys that contain the text or
phrase in their names or values.

Observe display key naming conventions
Generally, display key names begin with a capital letter. Internal capitalization separates words in compound display
key names. For example:
ContactDetail

PolicyCenter represents display keys in a hierarchical name space. A period (.) separates display key names in the
paths of the display key hierarchy. For example:
Validation.Contact.ContactDetail

Generally, you specify text values for display key names that are leaves on the display keys resource tree. Generally,
you do not specify text values for display key names that are parts of the path to a leaf display key. In the preceding
example, the display keys Validation and Validation.Contact have no text values, because they are parts of a
display key path. The display key ContactDetail has a text value, “Contact Detail”, because it is a leaf display key
with no child display keys beyond it.

Add a suffix to new display keys to avoid name conflicts
To avoid future naming conflicts when Guidewire adds or changes base display keys, append the suffix _Ext to your
new display key names.
For example, your PolicyCenter instance has a branch of the display key hierarchy for text that relates to contact
validation.
Validation.Contact.ContactDetail
Validation.Contact.NewContact

You want to add a display key for the text “Delete Contact”. Add a new display key named DeleteContact_Ext.
Validation.Contact.ContactDetail
Validation.Contact.DeleteContact_Ext
Validation.Contact.NewContact

Guidewire PolicyCenter 10.1.2 Best Practices Guide

16 chapter 3: User interface best practices

You can change the text for base display keys to change the text that the base configuration of the application
displays. Guidewire recommends that you use the base configuration display keys for this purpose so the base
configuration PCF files can just make use of the new values. If you add display keys with the suffix _Ext with the
intention of using them in the base configuration, the base configuration PCF files must be altered to use them.

Organize display keys by page configuration component
Guidewire recommends that you organize display keys under paths specific to the page configuration component
types and PCF file names where the text values of display keys appears. For example,
LV.Activity.Activities.DueDate

User interface performance best practices
The ways in which you configure the user interface of your PolicyCenter instance affects its performance. As
performance best practices for user interface configuration, Guidewire recommends that you always do the
following:
• “Avoid repeated calculations of expensive widget values” on page 17
• “Avoid expensive calculations of widget properties” on page 18
• “Use application permission keys for visibility and editability” on page 18

Avoid repeated calculations of expensive widget values
As a performance best practice, Guidewire recommends that you avoid repeated evaluation of performance intensive
expressions for widget values. Depending on the needs of your application, performance intensive expressions may
be unavoidable. However, you can improve overall performance of a page by choosing carefully where to specify
the expression within the page configuration.
For example, the following value range expression has a performance problem. Evaluation of the expression
requires two foreign key traversals and one array lookup. If the PolicyPeriod instance is not cached, PolicyCenter
executes three relational database queries, which makes the evaluation even more expensive.
RangeInput
...
valueRange |policyPeriod.Policy.Product.AllowedPolicyTerms

If a page with this range input widget has any postOnChange fields, PolicyCenter potentially evaluates the
expression multiple times for each postOnChange edit that a user makes.
The following topics provide additional suggestions for handling expensive expressions:
• “Use page variables for expensive value expressions” on page 17
• “Use recalculate on refresh with expensive page variables cautiously” on page 18

Use page variables for expensive value expressions

Instead of specifying an expensive expression as the value for a widget, create a page variable and specify the
expensive expression as the initial value. Then, specify the page variable as the value for the widget. Page variables
are evaluated only during the construction of the page, not during the remaining lifetime of the page, regardless of
postOnChange edits.
The following example suffers a performance problem, because it assigns an expensive expression to the value
property of a widget.
Input: myInput
 ...
 value |someExpensiveMethod()

The following modified sample code improves performance. It assigns a performance intensive expression to a page
variable and assigns the variable to the widget value.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

User interface best practices 17

Variables
 ...
 initialValue |someExpensiveMethod()
 name |expensiveResult

Input: myInput
 ...
 value |expensiveResult

Use recalculate on refresh with expensive page variables cautiously

PolicyCenter evaluates page variables only during the construction of the page, but sometimes you want
PolicyCenter to evaluate a page variable in response to postOnChange edits. If so, you set the
recalculateOnRefresh property of the page variable to true. If a page variable specifies an expensive expression
for its initialValue, carefully consider whether your page really must recalculate the variable. If you set the
recalculateOnRefresh property to true, PolicyCenter evaluates the expression at least once for every
postOnChange edit to the page.
Although PolicyCenter evaluates page variable with recalculateOnRefresh set to true for each postOnChange
edit, page variables can yield performance improvements compared to widget values. If several widgets use the
same expression for their values, using a page variable reduces the number of evaluations by a factor equal to the
number widgets that use it. For example, the valueRange of a range input used for drop-down lists in a list view
column are evaluated at least once for each row.

Avoid expensive calculations of widget properties
Page configuration widget properties editable, visible, available, and required, may need to be evaluated in
multiple contexts. If you have a complex or expensive expression in one of these properties, move the expression to
a page variable. Otherwise, the expression is evaluated several times before PolicyCenter displays the page.
The following example suffers a performance problem. It assigns a performance intensive expression to the visible
property of a widget.
Input: myInput
 ...
 id |myInput
 ...
 visible |activity.someExpensiveMethod()

The following modified sample code improves performance. It assigns a performance intensive expression to a page
variable. PolicyCenter evaluates page variables only once before it displays a page, regardless how many contexts
under which it evaluates widget properties on the page.
Variables
 ...
 initialValue |activity.someExpensiveMethod()
 name |expensiveResult

Input: myInput
 ...
 id |myInput
 ...
 visible |expensiveResult

Use application permission keys for visibility and editability
The visible and editable properties are evaluated many times during the lifetimes of locations and widgets. As a
performance best practice, Guidewire recommends that you structure the page configuration of your user interface
so application permission keys determine visibility and editability. This is the most common pattern for user access
in business applications.
For example, use the following Gosu expression in the visible property of a Renew button on a panel that displays
information about a policy period:

Guidewire PolicyCenter 10.1.2 Best Practices Guide

18 chapter 3: User interface best practices

perm.PolicyPeriod.renew(aPolicy)

Application permission keys evaluate the current user against general system permissions and the access control lists
of specific entity instances.

See also

• System Administration Guide

User interface best practices checklist
Use the following checklist before you complete your user interface configuration tasks to ensure that your user
interface configuration follows Guidewire best practices.

Best Practice to Follow Best Practice Was Followed

“Modify base PCF files whenever possible” on page 15

“Add a suffix to new PCF files to avoid name conflicts” on page 15

“Use display keys to display text” on page 16

“Use existing display keys whenever possible” on page 16

“Observe display key naming conventions” on page 16

“Add a suffix to new display keys to avoid name conflicts” on page 16

“Organize display keys by page configuration component” on page 17

“Avoid repeated calculations of expensive widget values” on page 17

“Use page variables for expensive value expressions” on page 17

“Use recalculate on refresh with expensive page variables cautiously” on page 18

“Use application permission keys for visibility and editability” on page 18

Guidewire PolicyCenter 10.1.2 Best Practices Guide

User interface best practices 19

Guidewire PolicyCenter 10.1.2 Best Practices Guide

20 chapter 3: User interface best practices

chapter 4

Rules best practices

PolicyCenter rules comprise hierarchies of conditions and actions that implement complex business logic. As a best
practice, Guidewire recommends that you edit rules by using the Rules editor in Guidewire Studio.

See also

• Rules Guide

Rules naming best practices
Guidewire recommends a number of rule naming best practices to help you identify and locate specific rules during
configuration, testing, and production.
• “Observe rule naming conventions” on page 21
• “Observe operating system length restrictions on rule names” on page 23
• “Get and display rule names in messages” on page 24
• “Assign a dedicated rules librarian to manage rule names” on page 24

Observe rule naming conventions
Each rule name within a rule set must be unique. To help ensure uniqueness, Guidewire recommends that you follow
the best practices naming conventions for rules described in this topic. In addition, these naming conventions help
you quickly identify each rule within the complex hierarchy of rules in your Guidewire instance during testing and
in production.
The basic format for a rule name has two parts:

Identifier- Description

Follow these conventions for Identifier and Description:
• Separate Identifier from Description with a space, followed by hyphen, followed by a space.
• Limit Identifier to eight alphanumeric characters.

Rules best practices 21

IMPORTANT PolicyCenter truncates Identifier values that exceed eight characters if you include
the actions.ShortRuleName property in rule actions to display rule names in messages that you
log or display. PolicyCenter also truncates Identifier values that exceed eight characters in
automatic log messages if you enable the RuleExecution logging category and set the server run
mode to Debug.

• Begin Identifier with up to four capital letters to identify the rule set or parent rule of which the rule is a
member.

• End Identifier with at least four numerals to identify the ordinal position of the rule within the hierarchy of
rules in the set.

• For Description values, keep them simple, short, and consistent in their conventions.
• Limit the total length of rule name to 60 characters.

For example:
CV000100 - Future loss date

Rule naming summary principles
Remember these principles for rule names:
• Rule names are unique within a rule set.
• Rules numbers are sequential to mimic the order of rules in the fully expanded set.

The following example demonstrates these principles.
Claim Validation Rules
 CV001000 - Future loss date
 CV002000 - Policy expiration date after effective date
 CV002500 - Not Set: Coverage in question
 CV003000 - Injury
 CVI03100 - Workers Compensation
 CVIW3110 - Claimant exists
 CVIW3120 - Not Set: Injury description
 CV103900 - Default
 CV004000 - Expected recovery exceeds 100

Root rules naming conventions
Consider the following example rule set, Claim Validation Rules. The identifiers of rules in this set all begin
with CV, a code to identify “Claim Validation” rules.
Claim Validation Rules
 CV001000 - Future loss date
 CV002000 - Policy expiration date after effective date
 CV003000 - Injury
 CVI03100 - Workmen’s Compensation
 CV103900 - Default
 CV004000 - Expected recovery exceeds 100

The rule set contains four root rules, with identifiers CV001000, CV002000, CV003000, and CV004000. The numbers
at the end of the identifiers, 1000, 2000, 3000 and 4000, are units of one thousand. This spread of numbers lets you
add new root rules between existing ones without renumbering. You want identifier numbers for rules in a set to
remain in sequential order to mimic the order of rules within the fully expanded set.
For example, you want to add a rule between CV002000 and CV003000. Assign the new rule the identifier CV002500.
Claim Validation Rules
 CV001000 - Future loss date
 CV002000 - Policy expiration date after effective date
 CV002500 - Not Set: Coverage in question
 CV003000 - Injury diagnosis validity dates
 CVI03100 - Workmen’s Compensation
 CV103900 - Default
 CV004000 - Expected recovery exceeds 100

Guidewire PolicyCenter 10.1.2 Best Practices Guide

22 chapter 4: Rules best practices

Parent and child rules naming conventions
Many rule sets achieve their business function with simple rules in the root of the set. In preceding example, rules
CV001000, CV002000, CV002500, and CV004000 are simple root rules. Frequently however, rule sets achieve their
business function only with a hierarchy of parent and child rules. In the example, rule CV003000 is a parent rule with
two child rules.
When you add child rules to a parent, follow these conventions:
• Expand the beginning code for the child rules with an additional letter to identify their parent.
• Assign each child rule an ending number that falls between the number of the parent and the sibling rule that

follows the parent.
• Assign the children a spread of numbers so you can add more children later without renumbering.

In the preceding example, the identifiers for the child rules of CV003000 all begin with CVI, a code to identify
“Claim Validation Injury” rules.
Claim Validation Rules
...
 CV003000 - Injury
 CVI03100 - Workmen’s Compensation
 CV103900 - Default
 CV004000 - Expected recovery exceeds 100

The spread of numbers for child rules of a root parent rule generally are units of one hundred. This spread of
numbers lets you add new child rules between existing ones without renumbering. Most importantly, the numbers of
child rules must fall between the numbers of their parent rule and the sibling rule that follows their parent. In this
example, the numbers for child rules satisfy both conventions.
The parent and child naming convention applies to another, third level of children. For example, you want to add
two new child rules to the rule CVI03100 - Workmens’s Compensation. Begin the child identifiers with CVIW, a
code to identify “Claim Validation Injury Workmen’s Compensation” rules. At the third level of a rule set hierarchy,
the spread of numbers for the child rules generally are units of ten.
Claim Validation Rules
...
 CV003000 - Injury
 CVI03100 - Workmen’s Compensation
 CVIW3110 - Claimant exists
 CVIW3120 - Not Set: Injury description
 CV103900 - Default
 CV004000 - Expected recovery exceeds 100

Observe operating system length restrictions on rule names
Guidewire stores rules in files within a directory structure that mimics the rule set category structure in Studio. The
fully qualified path for a rule file can be quite long, depending on:
• The length of the path to your Guidewire installation directory
• The length of the path from your installation directory to the root of the rules directory, which is 34 characters:

 modules/configuration/config/rules

• The depth of the hierarchy of rule categories, rule sets, rules, and parent/child rules
• The length of individual rule names

In addition, you must add four characters to the path for the name of each rule category, rule set, and parent rule.
You must understand the file system implications of rule names. Windows file systems have a file path limit of 255
characters. To avoid exceeding the limit, Guidewire recommends that you do the following:
• Avoid a long path to your Guidewire installation directory.
• Avoid deep hierarchies of rule set categories.
• Avoid hierarchies of parent and child rules within a rule set deeper than three levels.
• Avoid long names for rule set categories, rule sets, and rules.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Rules best practices 23

Get and display rule names in messages
As a best practice, Guidewire recommends that you get and display rule names in messages. So, following the
Guidewire best practices for rule names helps you identify specific rules in messages to users, in print statements for
testing, and in log messages. The alphabetic beginning of a rule identifier helps you find the rule set or parent rule
that contains the rule. The numeric ending helps you determine the order of a rule in a rule set or parent rule.
For example, you want to test a producer code validation rule, PCV01000 - No producer code roles. The
identifier portion of the rule name begins with PCV. That identifies the rule as a member of the
ProduceCodeValidationRules rule set. The identifier ends with 01000. That indicates that rule is near the
beginning of the rule set. The rule has the following definition.
PCV01000 - No producer code roles
Rule Conditions:
producerCode.ProducerCodeRoles.Count == 0

Rule Actions:
producerCode.rejectField("ProducerCodeRoles", null, null, "loadsave",
 "A role is required for producer code" + producerCode.Code + "."
)

As written, the rejection message that the rule action displays makes it difficult to determine exactly which rule
caused an update to fail. To help identify the specific rule in the rejection message, use the
actions.getRule().DisplayName property to include the identifier portion of the rule name in the message.
Rule Actions:
producerCode.rejectField("ProducerCodeRoles", null, null, "loadsave",
 "A role is required for producer code " + producerCode.Code +
 ". Rule: " + actions.getRule().DisplayName.substring(8)
)

By including the rule display name in the rule action, users see the following statement in the Validation window
when the rule action executes.
A role is required for producer code ACME235. Rule: PCV01000

Note: In actual practice, Guidewire recommends that you make all String values into display keys.

Assign a dedicated rules librarian to manage rule names
As a best practice, Guidewire recommends that you appoint someone in your organization to develop and enforce
simple and consistent naming conventions for rule categories, rule sets, and rule names. This helps ensure that
naming standards are followed to make sure that rule identifiers readily identify specific rules within the total
catalog of rules in your Guidewire instance.

Rules performance best practices
Guidewire recommends performance best practices for rules to help you avoid known performance issues.

Purge unused and obsolete rules before upgrading
As a best practice, Guidewire recommends that you purge unused and obsolete rules from your PolicyCenter
configuration. This improves the upgrade process because PolicyCenter does not spend time to evaluate inactive
rules that are unused or obsolete.

Rules best practices checklist
Use the following checklist before you complete your rule configuration tasks to ensure that your rules follow
Guidewire best practices.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

24 chapter 4: Rules best practices

Best Practice to Follow Best Practice Was Followed

“Observe rule naming conventions” on page 21

“Rule naming summary principles” on page 22

“Root rules naming conventions” on page 22

“Parent and child rules naming conventions” on page 23

“Observe operating system length restrictions on rule names” on page 23

“Get and display rule names in messages” on page 24

“Assign a dedicated rules librarian to manage rule names” on page 24

“Purge unused and obsolete rules before upgrading” on page 24

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Rules best practices 25

Guidewire PolicyCenter 10.1.2 Best Practices Guide

26 chapter 4: Rules best practices

chapter 5

Gosu language best practices

Gosu is a general-purpose programming language built on top of the Java Virtual Machine. PolicyCenter uses Gosu
as its common programming language.

See also

• Gosu Reference Guide

Gosu naming and declaration best practices
Guidewire recommends a number of best practices for naming and declaring Gosu variables, functions, and classes.
• “Observe general Gosu naming conventions” on page 27
• “Omit type specifications with variable initialization” on page 28
• “Add a suffix to functions and classes to avoid name conflicts” on page 28
• “Declare functions Private unless absolutely necessary” on page 28
• “Use public properties instead of public variables” on page 28
• “Do not declare static scope for mutable variables” on page 29
• “Use extensions to add functions to entities” on page 29
• “Match capitalization of types, keywords, and symbols” on page 29

Observe general Gosu naming conventions
As a best practice, Guidewire recommends the following general naming conventions.

Language Ele‐
ment

Naming Conventions Examples

Varia-
ble names

Name variables in mixed case, with the first letter lowercase and the first let-
ter of each internal word capitalized. Name variables mnemonically so that
someone reading your code can understand and easily remember what your
variables represent. Do not use single letters such as “x” for variable names,
except for short-lived variables, such as loop counts.

nextPolicyNumber
firstName
recordFound

Func-
tion names

Compose function names in verb form. Name functions in mixed case, with
the first letter lowercase and the first letter of each internal word capitalized.
Add the suffix _Ext to the ends of function names to avoid future naming con-
flicts if Guidewire adds or changes base functions.

getClaim_Ext()
getWageLossExposure_Ext()

Gosu language best practices 27

Language Ele‐
ment

Naming Conventions Examples

Class name Compose class names in noun form. Name classes in mixed case, with the first
letter uppercase and the first letter of each internal word capitalized. Add the
suffix _Ext to the ends of class names to avoid future naming conflicts if
Guidewire adds or changes base classes.

StringUtility_Ext
MathUtility_Ext

Omit type specifications with variable initialization
Type specifications in variable declarations are optional in Gosu if you initialize variables with value assignments.
Whenever you initialize a variable, Gosu sets the type of the variable to the type of the value. As a best practice,
Guidewire recommends that you always initialize variables and omit the type specification.
var amount = 125.00 // use an initialization value to set the type for a variable

var string = new java.lang.String("") // initialize to the empty string instead of null

Add a suffix to functions and classes to avoid name conflicts
In future releases, Guidewire may add or change base classes and functions. If you make changes to Guidewire
packages, there is the possibility of a naming conflict with one of these future updates. For example, you may add
enhancement methods or properties to existing Guidewire entities or classes. To avoid possible naming conflicts,
Guidewire recommends that you append the suffix _Ext to your new functions and classes. For example, name a
new function that calculates the days between two dates calculateDaysApart_Ext(...).
You generally will not modify Guidewire classes or packages directly. Instead, create new code within your own
package space. Code in your own package does not require a suffix, as it will not conflict with base Guidewire
changes. Add a suffix only if there is a possibility of a naming conflict with Guidewire base code.

Declare functions Private unless absolutely necessary
As a best practice, Guidewire recommends that you declare functions as public only with good reason. The default
access in Gosu is public. So, declare functions as private if you intend them only for use internally within a class or
class extension. Always prefix private and protected class variables with an underscore character (_).

Use public properties instead of public variables
As a best practice, Guidewire recommends that you convert public variables to properties. Properties separate the
interface of an object from the implementation of its storage and retrieval. Although Gosu supports public variables
for compatibility with other languages, Guidewire strongly recommends public properties backed by private
variables instead of public variables.
The following sample Gosu code declares a private variable within a class and exposes it as a public property by
using the as keyword. This syntax makes automatic getter and setter property methods that the class instance
variable backs.
private var _firstName : String as FirstName // Delcare a public property as a private variable.

Avoid declaring public variables, as the following sample Gosu code does.
public var FirstName : String // Do not declare a public variable.

See also

• Gosu Reference Guide

Guidewire PolicyCenter 10.1.2 Best Practices Guide

28 chapter 5: Gosu language best practices

Do not declare static scope for mutable variables
As a best practice, Guidewire recommends that you do not use static scope declaration for fields that an object
modifies during its lifetime. Static fields have application scope, so all sessions in the Java Virtual Machine (JVM)
share them. All user sessions see the modifications that made any user session makes to static properties.
For example, the following sample Gosu code is a bad example.
class VinIdentifier {
 static var myVector = new Vector() // All sessions share this static variable.

 static function myFunction(){
 myVector.add("new data") // Add data for the entire JVM, not just this session.
 }

 }

Use extensions to add functions to entities
As a best practice, Guidewire recommends that you add functions that operate on entities as extensions to the
existing entity type instead of as static functions on separate utility classes.

Implement functions that operate on single entity instances as extensions

If you want a new function that operates on single instances of an entity type, declare the new function in a separate
class extension to that entity type.
For example, you want a new function to suspend a policy. Name your new function suspend. Do not declare the
function as static with a Policy instance as its parameter. Instead, declare the function as an extension of the Policy
class, so callers can invoke the method directly on a Policy instance. For example:
if policy.suspend() {
 // Do something to suspend the policy.
}

Package entity extensions for an entity type in a single package

Package all of your extensions for an entity type together in a package with the same name as the entity they extend.
Do not place all of your entity extensions in a single package. Place all of your extension packages in a package
folder that identifies your organization.
For example, place all of your extensions to the Activity entity type in a package named
com.CustomerName.activity.

Match capitalization of types, keywords, and symbols
Access existing types exactly as they are declared, including correct capitalization. Use the Gosu editor’s code
completion feature to enter the names of types and properties correctly.
The following table lists conventions for capitalization of various Gosu language elements:

Language element Standard capitalization Example

Gosu keywords Always specify Gosu keywords correctly, typically lowercase. if

Type names, including class names Uppercase first character DateUtil
Claim

Local variable names Lowercase first character myClaim

Property names Uppercase first character CarColor

Method names Lowercase first character printReport

Package names Lowercase all letters in packages and subpackages com.mycompany.*

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 29

Some entity and typelist APIs are case insensitive if they take String values for the name of an entity, a property, or
a typecode. However, it is best write your code as if they are case sensitive.

See also

• Gosu Reference Guide

Gosu commenting best practices
As a best practice, Guidewire recommends a variety of comment usages and styles.
• “Comment placement” on page 30
• “Block comments” on page 30
• “Javadoc comments” on page 30
• “Single-line comments” on page 30
• “Trailing comments” on page 31
• “Using comment delimiters to disable code” on page 31

Comment placement
As a commenting best practice, always place block comments before every class and method that you write. Briefly
describe the class or method in the block comment. For comments that you place within methods, use any of the
commenting styles to help clarify the logic of your code.

Block comments
Block comments provide descriptions of libraries and functions. A block comment begins with a slash followed by
an asterisk (/*). A block comment ends with an asterisk followed by a slash (*/). To improve readability, place an
asterisk (*) at the beginnings of new lines within a block comment.
/*
 * This is a block comment.
 * Use block comments at the beginnings of files and before
 * classes and functions.
 */

Place block comments at the beginnings of files, classes, and functions. Optionally, place block comments within
methods. Indent block comments within functions to the same level as the code that they describe.

Javadoc comments
Javadoc comments provide descriptions of classes and methods. A Javadoc comment begins with a slash followed
by two asterisks (/**). A Javadoc comment ends with a single asterisk followed by a slash (*/).
/**
 * Describe method here--what it does and who calls it.
 * How to Call: provide an example of how to call this method
 * @param parameter description (for methods only)
 * @return return description (for methods only)
 * @see reference to any other methods,
 * the convention is
 * <class-name>#<method-name>
 */

Block comments that you format using Javadoc conventions allow automated Javadoc generation.

Single-line comments
Single-line comments provide descriptions of one or more statements within a function or method. A single-line
comment begins with double slashes (//) as the first two characters two non-whitepsace characters on a line.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

30 chapter 5: Gosu language best practices

// Handle the condition
if (condition) {
 ...
}

If you cannot fit your comment on a single line, use a block comment, instead.

Trailing comments
Trailing comments provide very brief descriptions about specific lines of code. A trailing comment begins with
double slashes (//) following the code that the comment describes. Separate the double slashes from the code with
at least two spaces.
if (a == 2) {
 return true // Desired value of ’a’
}
else {
 return false // Unwanted value of ’a’
}

If you place two or more trailing comments on lines in a block of code, indent them all to a common alignment.

Using comment delimiters to disable code
Use a single-line comment delimiter (//) to comment out a complete or partial line of code. Use a pair of block
comment delimiters (/*, */) to comment out a block of code, even if the block you want to comment out contains
block comments.

Note: Do not use single-line comment delimiters (//) on consecutive lines to comment out multiple
lines of code. Use block comment delimiters (/*, */), instead.

Use caution if you include slashes and asterisks within block comments to set off or divide parts of the comment.
For example, do not use a slash followed by a line of asterisks as a dividing line within a block comment. In the
following example, the compiler interprets the dividing line as the beginning of a nested comment (/*) but finds no
corresponding closing block comment delimiter (*/).
/*
 The dividing line starts a nested block comment and causes an unclosed comment compiler error.
 //**
*/

In the preceding example, compilation fails due to an unclosed comment. The following example avoids compilation
errors by inserting a space between the slash and the first asterisk.
/*
 The dividing line does not start a nested block comment and causes no compiler error.
 // **
*/

Single-line comment delimiters (//) are ignored in block comments.

Gosu coding best practices
Guidewire recommends a number of best practices for Gosu code.
• “Use whitespace effectively” on page 32
• “Use parentheses effectively” on page 32
• “Use curly braces effectively” on page 33
• “Program defensively against conditions that can fail” on page 33
• “Omit semicolons as statement delimiters” on page 34
• “Observe null safety with equality operators” on page 35
• “Use typeis expressions for automatic downcasting” on page 35

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 31

• “Observe loop control best practices” on page 36
• “Return from functions as early as possible” on page 37
• “Use gw.api.util.DateUtil instead of java.util.Date” on page 37

Guidewire internal methods
Some code packages contain Guidewire internal classes that are reserved for Guidewire use only. Gosu code written
to configure PolicyCenter must never use an internal class nor call any method of an internal class for any reason.
Future releases of PolicyCenter can change or remove an internal class without notification.
The following packages contain Guidewire internal classes.
• All packages in com.guidewire.*
• Any package whose name or location includes the word internal

Gosu configuration code can safely use classes defined in any gw.* package, except for those packages whose name
or location includes the word internal.
Some Gosu classes are visible in Studio, but are not intended for use. You can distinguish these Gosu classes
because they have no visibility annotations (neither @Export nor @ReadOnly) and they are not in a gw package. Do
not use these methods in configuration. The methods are unsupported and may change or be withdrawn without
notice.

Use whitespace effectively
Guidewire recommends the following best practices for effective use of whitespace:
• Add spaces around operators.

premium = Rate + (minLimit - reductionFactor) // proper form

premium=Rate+(minLimit-reductionFactor) // improper form

• Add no spaces between parentheses and operands.
((a + b) / (c - d)) // proper form

((a + b) / (c - d)) // improper form

• Indent logical blocks of code by two spaces only.
• Add a blank line after code blocks.
• Add two blank lines after methods, even the last method in a class.

Use parentheses effectively
As a best practice, Guidewire recommends that you always use parentheses to make explicit the operator order of
precedence in computational expressions. Otherwise, your computations can be harder to read and more likely to
contain mistakes.

Example

In the following example, the two expressions produce the same results, but the first expression uses parentheses to
make the standard operator order clear:

value = rate + (limit * 10.5) + (deductible / autoGrade) - 15 // clear order of precedence

value = rate + limit * 10.5 + deductible / autoGrade - 15 // same result, but poor form

Example

In the following example, using parentheses in the second Boolean expression ensures that it is read correctly:

Guidewire PolicyCenter 10.1.2 Best Practices Guide

32 chapter 5: Gosu language best practices

a == b or (c == d and e == f) // clear order of precedence

a == b or c == d and e == f // same result, but poor form

Use curly braces effectively
Guidewire recommends the following best practices for effective use of curly braces:
• Surround every logical block, even single-statement blocks, with curly braces ({}).
• Put the opening curly braces ({) on the same line that starts the block.
• Put the closing curly brace (}) on the line after the last statement in the block, aligned with the starting column of

the block.
if(premium <= 1000) { // Put opening curly brace on line that starts the block.
 print("The premium is " + premium) // Surround even single-line blocks with curly braces.
} // Put closing curly brace on line after last statement.

Program defensively against conditions that can fail
As a best practice, Guidewire recommends that you program defensively. Always assume that conditions might fail.
Follow these recommendations to avoid common but easily missed programming flaws, such as potential null
pointer exceptions and out-of-bounds exceptions.

Use case-insensitive comparisons
Use the equalIgnoreCase method on the string literal to compare it with the value of a variable. Case mismatch can
cause comparisons to fail unintentionally.
if("Excluded".equalsIgnorecase(str)) { // proper comparison method
 print("They match.")
}

 if(string.equals("Excluded")) { // improper comparison method
 print("They do NOT match.")
}

Check for null values
If your code cannot handle a variable that contains non-null values, check the variable for null before you access
properties on the variable.
function formatName (aUser : User) {
 if (aUser != null) { // Check for null to avoid a null pointer exception later in the code.
 print(aUser.DisplayName)
 }
 else {
 print("No user")
 }
}

Also, check variables for null before you call methods on variables:
function addGroup (aUser : User, : aGroupUser : GroupUser) {
 if (aUser != null) { // Check for null to avoid a null pointer if you call methods on the variable.
 aUser.addToGroup(aGroupUser)
 }
}

Consider the following issues if you do not check variables for null:
• Accessing a property on a variable may use null-safe property access, which can cause null pointer exceptions in

later code that handles only non-null values.
• Calling a method on a variable risks a null pointer exception.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 33

Allow default null-safe property access
If your code can handle a variable that contains null values, you can rely on null-safe access of simple properties in
most cases. With null-safe property access, the entire expression evaluates to null if the left-side of a period
operator is null.
For example, the following sample Gosu code returns null if the user object passed in by the caller is null. Default
null-safe property access prevents a null pointer exception in the return statement.
function formatName (aUser : User) : String {
 return aUser.DisplayName // Default null-safe access returns null if the passed-in user is null.
}

Usage of explicit null-safe operators
If your code does not need to perform additional actions for an object path expression that evaluates to null, use the
explicit Gosu null safe operators:
• ?. – Null-safe access to methods
• ?[] – Null-safe access to arrays

Note that access to properties is always null-safe.
The following sample Gosu code uses the explicit null-safe operator ?. to check for null to avoid a null pointer
exception while calling a method. If either aPerson or aPerson.PrimaryAddress is null, Gosu does not call the
method hashCode and the entire object path expression aPerson.PrimaryAddress?.hashCode() evaluates to 0,
which is the int value for null.
function formatName (aPerson : Person) : int {
 // An explicit null-safe operator returns null if aPerson or PrimaryAddress is null.

 return aPerson.PrimaryAddress?.hashCode()
}

The following sample Gosu code uses the explicit null-safe operator ?[] to check for null to avoid a null pointer
exception while accessing an array. If strings[] is null, the entire expression strings?[index] evaluates to
null. However, the null-safe operator does not avoid out-of-bounds exceptions if strings[] is non-null and the
value of index exceeds the array length. For example, if the array is empty rather than null, an out-of-bounds
exception occurs.
function getOneString (strings : String[], index : int) : String {
 return = strings?[index] // An explicit null-safe operator evaluates to null if an array is null.
}

See also

• Gosu Reference Guide

Check boundary conditions
In for loops, check for boundary conditions ahead of the loop. Entering a loop if the boundary condition is satisfied
already can cause null pointer exceptions and out-of-bounds exceptions.

Use structured exception handling
Use try/catch blocks wherever required and possible. If you want to catch multiple exceptions, handle them in a
hierarchy from low-level, specific exceptions to high-level, generic exceptions.

Omit semicolons as statement delimiters
Semicolons as statement delimiters are optional in Gosu. As a best practice, Guidewire recommends that you omit
semicolons. They are unnecessary in almost all cases, and your Gosu code looks cleaner and easier to read without
them.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

34 chapter 5: Gosu language best practices

// Omit semicolons with statements on separate lines.
print(x)
print(y)

Gosu requires semicolons only if you place multiple statements on a single line. As a best practice, Guidewire
generally recommends against placing multiple statements on a single line. Exceptions include simple statement lists
declared in-line within Gosu blocks.
// Include semicolons with multiple statements on a single line.
var adder = \ x : Number, y : Number -> { print("I added!"); return x + y; }

Observe null safety with equality operators
The equality and inequality comparison operators == and != are null safe if one side or the other evaluates to null.
Operators that are null safe do not throw null pointer exceptions. As a best practice, Guidewire recommends that you
use these comparison operators instead of the equals method on objects.
if (variable1 == variable2) { // Comparison operators are null safe.
 print("The variables are equal.")
} else {
 print("The variables are NOT equal.")
}

Rewrite comparison operators to avoid the equals method
Do not write Gosu code that uses the equals method because it is not type safe.
if (activitySubject.equals(row.Name.text) { // This expression is not null safe.
 ...
}

As a best practice, Guidewire recommends that you rewrite your Gosu code with comparison operators instead of
equals methods to make your code type safe and easier to read.
if (activitySubject == row.Name.text) { // This is expression is null safe and easier to read.
 ...
}

Use typeis expressions for automatic downcasting
As a best practice, Guidewire recommends that you use typeis expressions to compare the type of an object with a
given subtype. After a typeis expression, Gosu automatically downcasts subsequent references to the object if the
object is of the type or a subtype of the original typeis expression. Use typeis expressions for automatic
downcasting to improve the readability of your code by avoiding redundant and unnecessary casts.
The automatic downcasting of typeis expressions is particularly valuable for if statements and similar Gosu flow
of control structures. Within the code block of an if statement, you can omit explicitly casting the object as its
subtype. Gosu confirms that the object is the more specific subtype and considers it be the subtype within the if
code block.
The following sample Gosu code shows a pattern for how to use a typeis expression with an if statement.

var variableName : TypeName // Declare a variable as a high-level type.

if (variableName typeis SubtypeName) { // Downcast the variable to one of its subtypes.
 ... // Use the variable as its subtype without explicit casting.
}

The following sample Gosu code follows the pattern and declares a variable as an Object. The if condition
downcasts the variable to its more specific subtype, String.
var x : Object = "nice" // Declare a String variable as type Object.
var strlen = 0

if (x typeis String) { // Downcast the Object variable to its subtype String.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 35

 strlen = x.length // Use the variable as a String without explicit casting.
}

Because Gosu propagates the downcasting from the if condition into the if code block, the expression x.length is
valid. The length property is on String, not Object.
The following sample Gosu code is equivalent to the preceding example, but it redundantly casts the variable as a
String within the if code block.
var x : Object = "nice" // Declare a String variable as type Object.
var strlen = 0

if (x typeis String) { // Downcast the Object variable to its subtype String.
 strlen = (x as String).length // Explicit casting as String is redundant and unnecessary.
}

See also

• Gosu Reference Guide

Observe loop control best practices
Gosu provides for(), while(), and do…while() statements for loop control. Guidewire recommends a few best
practices for your loop control logic:
• “Implement conditional operators in loop conditions correctly” on page 36
• “Interrupt loop execution as early as possible” on page 36

Implement conditional operators in loop conditions correctly
As a best practice, Guidewire recommends that you verify the conditional operators in your conditional expressions
to be certain that you fully satisfy the requirements for your loop control logic. For example, <, >, or = might need to
be <=, >=, or !=.

Interrupt loop execution as early as possible
As a best practice, Guidewire recommends that you interrupt loop execution as early as possible with continue or
break commands.

Use break to break out of loop iteration altogether

The break command stops execution of the loop altogether, and program execution proceeds immediately to the
code that follows the loop.
The following sample Gosu code breaks out of the loop altogether on the fourth iteration, when i equals 4.
for (i in 1..10) {
 if (i == 4) {
 break // Break out of the loop on the fourth iteration.
 }

 print("The number is " + i)
}

 print("Stopped printing numbers")

The preceding sample Gosu code produces the following output.
The number is 1
The number is 2
The number is 3
Stopped printing numbers

Notice that the loop stops executing on the fourth iteration, when i equals 4.

Use a continue statement to continue immediately with the next loop iteration

The continue statement stops execution of the current iteration, and the loop continues with its next iteration.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

36 chapter 5: Gosu language best practices

The following sample Gosu code interrupts the fourth iteration, when i equals 4, but the loop continues executing
through all remaining iterations.
for (i in 1..10) {
 if (i == 4) {
 continue // End the fourth iteration here.
 }

 print("The number is " + i)
}

The preceding sample code produces the following output.
The number is 1
The number is 2
The number is 3
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

Notice that the loop continues through all nine iterations, but it interrupts the fourth iteration, when i equals 4.

Return from functions as early as possible
As a best practice, Guidewire recommends that functions return as early as possible to avoid unnecessary
processing.
The following sample Gosu code is inefficient. The function uses a variable unnecessarily, and it does not return a
result as soon as it detects the affirmative condition.
public function foundThree() : boolean {
 var threeFound = 0 // A numeric variable is unnecessary to return a boolean result.

 for (x in 5) {
 if (x == 3) {
 threeFound = threeFound + 1 // The loop keeps iterating after third one is found.
 }

 }

 return threeFound >= 1 // The function returns long after third one is found.
}

The following modified sample code is more efficient. The function returns a result as soon as it detects the
affirmative condition.
public function foundThree() : boolean {
 for (x in 5) {
 if (x == 3) {
 return true // The function returns as soon as the third one is found.
 }

 }

 return false
}

Use gw.api.util.DateUtil instead of java.util.Date
As a best practice, Guidewire recommends that you use the utility functions of gw.api.util.DateUtil instead
java.util.Date in working with dates. Each class provides a set of utility functions that operate on date and time
data. Guidewire recommends using the DateUtil methods, however, as the utility functions in DateUtil derive
their time from the PolicyCenter database time. In contrast, the java.util.Date functions derive their time from
PolicyCenter application time.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 37

IMPORTANT If you intend to do time-based testing, any dates affected by your implementation of the
ITestingClock plugin must use the DateUtil utility functions.

See also

• Integration Guide

Gosu performance best practices
The ways in which you write your Gosu code affects compile-time and run-time performance. As best practices for
improving the performance of your code, Guidewire recommends that you always do the following:
•
• “Consider the order of terms in compound expressions” on page 38
• “Avoid repeated method calls within an algorithm” on page 39
• “Remove constant variables and expressions from loops” on page 39
• “Avoid doubly nested loop constructs” on page 39
• “Pull up multiple performance intensive method calls” on page 40
• “Be wary of dot notation with object access paths” on page 41
• “Avoid code that incidentally queries the database” on page 41
• “Use comparison methods to filter queries” on page 42
• “Use comparison methods instead of the Where method” on page 42
• “Use Count properties on query builder results and find queries” on page 43
• “Use activity pattern codes instead of public IDs in comparisons” on page 44
• “Create single plugin instance” on page 44

Consider the order of terms in compound expressions
As a performance best practice, Guidewire recommends that you carefully consider the order of comparisons in
compound expressions that use the and and or operators. Runtime evaluation of compound expressions that use
and proceed from left to right until a condition fails. Runtime evaluation of compound expressions that use or
proceed from left to right until a condition succeeds. The order in which you place individual conditions can
improve or degrade evaluation performance of compound expressions.

With and expressions, place terms likely to fail earlier

Whenever you use the and operator, place the condition that is most likely to fail or the least performance intensive
earliest in the compound expression. Use the following formula to help you determine which condition to place first,
based on the condition with the lowest value.

(100 - failurePercentage) * (performanceCost)

For example, you have a condition that you expect to fail 99% of the time, with an estimated performance cost of
10,000 per evaluation. You have another condition that you expect to fail only 1% of the time, with an estimated
performance cost of 100 per evaluation. According to the formula, place the second condition earliest because it has
the lowest score.
(100 - 99) * 10,000 = 10,000
(100 - 1) * 100 = 9,999

You rarely have accurate figures for the failure percentages or performance costs of specific condition. Use the
formula to develop an educated guess about which condition to place earliest. In general, give preference to less
performance intensive condition. If the performance costs are roughly equal, give preference to condition with a
higher percentage of likely failures.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

38 chapter 5: Gosu language best practices

With or expressions, place terms likely to pass earlier

When you use the or operator, place the condition that is most likely to succeed earliest in compound expressions.

Avoid repeated method calls within an algorithm
Calling a method repeatedly to obtain a value often results in poor performance. As a performance best practice,
Guidewire recommends that you save the value from the first method call in a local variable. Then, use the local
variable to repeatedly test the value.
The following sample Gosu code suffers a performance problem. It calls a performance intensive method twice to
test which value the method returns.
if (policy.expensiveMethod() == "first possibility") { // first expensive call
 // do something
}

 else if (policy.expensiveMethod() == "second possibility") { // second expensive call
 // do something else
}

The following modified sample code improves performance. It calls a performance intensive method once and saves
the value in a local variable. It then uses the variable twice to test which value the method returns.
var expensiveValue = policy.expensiveMethod() // Save the value of an expensive call.

 if (expensiveValue == "first possibility") { // first reference to expensive result
 // do something
}

 else if (expensiveValue == "second possibility") { // second reference to expensive result
 // do something else
}

Remove constant variables and expressions from loops
As a performance best practice, Guidewire recommends that you do not include unnecessary variables, especially
ones that hold objects and entity instances, within loops.
The following sample Gosu code suffers a performance problem. The loop includes an object access expression,
period.Active, which remains unchanged throughout all iterations of the loop.
var period : PolicyPeriod

 for (x in 5) {
if (x == 3 and period.Active) { // Evaulate a constant expression redunantly within a loop.
 print("x == 3 on active period")
 }

 }

In the preceding example, Gosu evaluates the expression period.Active at least twice unnecessarily. The following
modified sample code improves performance.
var period : PolicyPeriod

 if (period.Active) { // Evaluate a constant expression only once before a loop.
 for (x in 5) {
 if (x == 3) {
 print("x == 3 on active period")
 }
 }
}

Avoid doubly nested loop constructs
Nesting a loop construct inside another often produces inefficient code or code that does not produce correct results.
As a performance best practice, Guidewire recommends that you avoid any doubly nested loop constructs.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 39

The following sample Gosu code attempts to find duplicate values in an array by using a for loop nested inside
another. The code is inefficient because it loops through the array five times, once for each member of the array. It
produces inappropriate results because it reports the duplicate value twice.
var array = new int[]{1, 2, 3, 4, 3} // An array with a duplicated value

 for (y in array index m) { // Loop through the array

 for (z in array index n) { // Nested loop through the array or each
 // member in the outer loop

 if (m != n and y == z) { // If current members in outer and inner
 // loops differ and member values are equal
 print("duplicate value: " + z) // Print a duplicate value in the array

 }
 }
}

The preceding sample code produces the following output.
duplicate value: 3
duplicate value: 3

The following sample Gosu code is a better solution. The code is more efficient because it loops through the array
once only. It produces appropriate results because it reports the duplicate value once only.
var array = new int[]{1, 2, 3, 4, 3} // An array with a duplicated value
var hashSet = new java.util.HashSet() // Declare an empty hash set, which prohibits
 // duplicate values

 for (y in array) // Loop through the array
 if (!hashSet.add(y)) { // If array value cannot be added
 // to the hash set
 print("duplicate value: " + y) // Print a duplicate value in the array

 }

The preceding sample code produces the following output.
duplicate value: 3

Pull up multiple performance intensive method calls
As a performance best practice, Guidewire recommends a technique called pulling up. With the pulling up
technique, you examine your existing code to uncover performance intensive method calls that occur in multiple,
lower-level methods. If you identify such a method call, pull it up into the higher level-method, so you call it only
once. Cache the result in a local variable. Then, call the lower-level methods, and pass the result that you cached
down to the lower-level methods as a context variable.
The following sample Gosu code suffers a performance problem. It pushes an expensive method call down to the
lower-level routines, so the code repeats the expensive call three times.
function computeSomething() { // Performance suffers with an expensive call pushed down.

 computeA()
 computeB()
 computeC()
}

 function computeA() {
 var expensiveResult = expensiveCall() // Make the expensive call once.
 //do A stuff on expensiveResult
}

 function computeB() {
 var expensiveResult = expensiveCall() // Make the same expensive call twice.
 //do B stuff on expensiveResult
}

 function computeC() {
 var expensiveResult = expensiveCall() // Make the same expensive call three times.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

40 chapter 5: Gosu language best practices

 //do C stuff on expensiveResult
}

The following modified sample code improves performance. It pulls the expensive method call up to the main
routine, which calls it once. Then, it passes the cached result down to the lower-level routines, as a context variable.
function computeSomething() { // Performance improves with an expensive call pulled up.

 var expensiveResult = expensiveCall() // Make the expensive call only once.

 computeA(expensiveResult)
 computeB(expensiveResult)
 computeC(expensiveResult)
}

 function computeA(expensiveResult : ExpensiveResult) { // Use the pushed down result.
 //do A stuff on expensiveResult
}

 function computeB(expensiveResult : ExpensiveResult) { // Use the pushed down result.
 //do B stuff on expensiveResult
}

 function computeC(expensiveResult : ExpensiveResult) { // Use the pushed down result.
 //do C stuff on expensiveResult
}

Be wary of dot notation with object access paths
As a performance best practice, Guidewire recommends that you be aware of the performance impact of dot notation
to access instance arrays on object access paths. You can write an object access path quickly, but your code at
runtime can run extremely slowly.
The following sample Gosu code suffers a performance problem. It acquires an array of interest types for all
additional interests for all vehicles on the Personal Auto line of business.
var personalAutoLine : PersonalAutoLine
var personalAutoAddresses = personalAutoLine.Vehicles*.AdditionalInterests*.AdditionalInterestType

Most likely this was not what the developer intended. Determine the most efficient means of acquiring just the data
that you need. For example, rewrite the preceding example to use a query builder expression that fetches a more
focused set of interest types from the application database.

See also

• Integration Guide

Avoid code that incidentally queries the database
As a performance best practice, Guidewire recommends that you avoid object property access or method calls that
potentially query the relational database.

Accessing entity arrays does not incidentally query the database

The following sample Gosu code accesses an array of Vehicle instances as entity array.
policyLine.Vehicles // Accessing an entity array does not query the database.

Accessing the entity array does not incidentally query the relational database. The application database caches them
whenever it loads a parent entity from the relational database.

Accessing finder arrays incidentally queries the database

The following sample Gosu code accesses an array of Policy entities by using a Finder method on a Policy
instance.
policy.Finder.findLocalPoliciesForAccount(account) // Accessing a finder array queries the database.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 41

Calling a Finder method does incidentally query the relational database. However, the application database does not
cache finder arrays. Only your code keeps the array in memory.
To avoid repeated, redundant calls that incidentally query the database, Guidewire recommends as a best practice
that you cache the results once in a local array variable. Then, pass the local array variable to lower level routines to
operate on the same results. This design approach is an example of pulling up.

See also

• “Pull up multiple performance intensive method calls” on page 40

Use comparison methods to filter queries
The relational database that supports PolicyCenter filters the results of a query much more efficiently than your own
Gosu code, because it avoids loading unnecessary data into the application server. As a performance best practice,
Guidewire recommends that you filter your queries with comparisons methods rather than filter the results with your
own code.
The following sample Gosu code suffers a performance problem. It inadvertently loads most of the claims, along
with their policies, from the relational database. Then, the code iterates the loaded claims and their policies and
process only those few that match a specific policy. In other words, the code loads an excessive amount of data
unnecessarily and takes an excessive amount of time to search for a few instances to process.
var targetPolicy : Policy
var claimQuery = Query.make(Claim) // Performance suffers because the query loads all claims.

 for (claim in claimQuery.select()) {
 if (claim.Policy == targetPolicy) { // Local Gosu code filters claims.
 // Do something on claims of targeted policies.
 ...
 }
}

The following modified sample Gosu code improves performance. It finds only relevant policies to process with the
compare method:
var targetPolicy : Policy
var claimQuery = Query.make(Claim) // Performance improves because the query loads few claims.

 claimQuery.compare("policy", Equals, targetPolicy) // Query comparison method filters claims.

for (claim.Policy in query.select()) {
 // Do something on claims of targeted policies.
}

Use comparison methods instead of the Where method
As a performance best practice, Guidewire recommends that you always use comparison methods on query objects
made with the query builder APIs. Never convert a query builder result object to a collection and then use the where
method on the collection to specify the criteria for the query result. PolicyCenter applies comparison methods
whenever a query executes, and the database returns only qualifying entity instances to the application. Without any
comparison methods, converting a query result to a collection loads all instances of the primary entity type into the
application cache. The where method on the collection then creates a second collection with the qualifying
instances.

Comparison methods example

The following sample Gosu code queries the database for addresses in the city of Chicago by using a compare
method on the query object. The select object returns only Chicago addresses from the database. The database
executes the query at the time the code calls the iterator method.
uses gw.api.database.Query

 var queryObject = Query.make(Address) // Create a query object.

 queryObject.compare(Address#City, Equals, "Chicago") // Apply qualifying, where-clause, criteria.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

42 chapter 5: Gosu language best practices

 var selectObject = queryObject.select() // Convert the query object to a select object.

 var resultIterator = selectObject.iterator() // Convert the select object to an iterator object,
 // which causes the query to be executed
 // in the database.

 for (address in resultIterator) { // Iterate the the qualifying addresses in result object.
 print (address.AddressLine1 + ", " + address.City + ", " + address.PostalCode)

 }

The preceding sample code performs efficiently, because the database selects the Chicago addresses. The sample
code also uses the application cache efficiently, because it loads only the Chicago addresses into application
memory.

The Where method example

In contrast to a comparison method on a query object, the where method on a collection performs less efficiently and
is highly inefficient in its use of application memory. For example, the following sample Gosu code queries the
database for all addresses because it omits comparison methods on the query object. The code then converts the
result object, with all addresses, to a collection. Finally, the code calls the where method on the collection to create a
second collection with only addresses in the city of Chicago.
uses gw.api.database.Query

 var resultContainer = Query.make(Address).select().toCollection().where(// Fetch all addresses into
 // a collection and make
 \ elt -> elt.City == "Chicago" // another collection with
) // qualifying addresses.

 for (address in resultContainer) { // Iterate the second container with the qualifying addresses.
 print (address.AddressLine1 + ", " + address.City + ", " + address.PostalCode)

 }

Returning all addresses to the application uses the cache inefficiently by loading it with unwanted addresses.
Converting the result to a collection uses the application heap inefficiently by loading the collection with unwanted
addressees. Calling the where method on the collection to select only addresses in Chicago performs the selection
much less efficiently than the database.

Use Count properties on query builder results and find queries
As a performance best practice, Guidewire recommends that you obtain counts of items fetched from the application
database by using the Count properties on query builder result objects. The same recommendation applies to find
expression query objects. Do not iterate result or query objects to obtain a count.

IMPORTANT Guidewire recommends the query builder APIs instead of find expressions to fetch items
from the application database whenever possible, especially for new code. For more information, see
the Integration Guide.

Use Empty properties if you want to know whether anything was found

If you want to know only whether a result or query object fetched anything from the application database, use the
Empty property instead of the Count property. The value of the Empty property returns to your Gosu code faster,
because the evaluation stops as soon as it counts at least one fetched item. In contrast, the value of the Count
property returns to your Gosu only after counting all fetched items.
The following sample Gosu code uses the Count property on a query builder API result object.
uses gw.api.database.Query

var policyPeriodQuery = Query.make(PolicyPeriod) // Find all policy periods.
var result = policyPeriodQuery.select()

if (result.Empty) { // Does the result fetch anything?
 print ("Nothing found.")

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 43

}
else {
 print ("Got some!")
}

The following sample Gosu code uses the Count property on a find expression query object.
var policyPeriodQuery = find(p in PolicyPeriod) // Find all policy periods.

if (policyPeriodQuery.Empty) { // Did the query fetch anything?
 print ("Nothing found.")
}
else {
 print ("Got some!")
}

Use Count properties if you want the number found

The following sample Gosu code uses the Count property on a query builder API result object.
uses gw.api.database.Query

var policyPeriodQuery = Query.make(PolicyPeriod) // Find all policy periods.
var result = policyPeriodQuery.select()
print("Number of policy periods: " + result.Count)

The following sample Gosu code uses the Count property on a find expression query object.
var policyPeriodQuery = find(p in PolicyPeriod) // Find all policy periods.
print("Number of policy periods: " + policyPeriodQuery.Count)

Use activity pattern codes instead of public IDs in comparisons
As a performance best practice, Guidewire recommends that you always use activity pattern codes
(Activity.Pattern.Code) in comparison expressions for conditional processing and in queries. Comparisons of
activity patterns by codes frequently avoid database reads to evaluate the expression.
The following sample Gosu code suffers a performance problem. The comparison with Activity.Pattern by
public ID cc:12345 always requires a database read to evaluate the expression.
if (Activity.ActivityPattern == ActivityPattern("cc:12345")) { // Comparisons of activity pattern
 // public IDs always require a
} // database read.

The following sample Gosu code improves performance by comparing Activity.Pattern.Code with an activity
pattern code in the conditional expression.
if (Activity.ActivityPattern.Code == "MyActivityPatternCode") { // Comparisons of activity pattern
 ... // codes generally avoid a
} // database read.

Never localize activity pattern codes. These codes are intended for use in Gosu expressions, not for display in error
messages of the application user interface.

See also

• Globalization Guide

Create single plugin instance
Instantiate each plugin class as a Singleton that is created one time and accessible throughout the application.
var samplePlugin = gw.plugin.Plugins.get(com.acme.plugin.SamplePlugin)

Guidewire PolicyCenter 10.1.2 Best Practices Guide

44 chapter 5: Gosu language best practices

Gosu template best practices
The Gosu compiler converts a Gosu template file into generated Java class files. The Java compiler has a maximum
size of 65535 bytes for any class method. Sufficiently large Gosu templates can result in templates that fail at run
time due to this JVM limitation.
If you have very large templates, break them into nested templates. For example, suppose you have a large template
that generates three different sections of a large page. Create three additional templates that generate one part of the
content. The original template could contain code that calls the other three templates. This design practice prevents
bumping up against the size limit. Additionally, this style produces more readable and more manageable code.

See also

• Gosu Reference Guide

Gosu best practices checklist
Use the following checklist before you complete your Gosu coding tasks to ensure that your Gosu code follows
Guidewire best practices.

Naming and declaration best practices

Best Practice to Follow Best Practice Followed

“Observe general Gosu naming conventions” on page 27

“Omit type specifications with variable initialization” on page 28

“Add a suffix to functions and classes to avoid name conflicts” on page 28

“Declare functions Private unless absolutely necessary” on page 28

“Use public properties instead of public variables” on page 28

“Do not declare static scope for mutable variables” on page 29

“Use extensions to add functions to entities” on page 29

“Match capitalization of types, keywords, and symbols” on page 29

Commenting best practice

Best Practice to Follow Best Practice Followed

“Comment placement” on page 30

“Block comments” on page 30

“Javadoc comments” on page 30

“Single-line comments” on page 30

“Trailing comments” on page 31

“Using comment delimiters to disable code” on page 31

Coding best practices

Best Practice to Follow Best Practice Followed

“Use whitespace effectively” on page 32

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Gosu language best practices 45

Best Practice to Follow Best Practice Followed

“Use parentheses effectively” on page 32

“Use curly braces effectively” on page 33

“Program defensively against conditions that can fail” on page 33

“Omit semicolons as statement delimiters” on page 34

“Observe null safety with equality operators” on page 35

“Use typeis expressions for automatic downcasting” on page 35

“Observe loop control best practices” on page 36

“Return from functions as early as possible” on page 37

Performance best practices

Best Practice to Follow Best Practice Followed

“Consider the order of terms in compound expressions” on page 38

“Avoid repeated method calls within an algorithm” on page 39

“Remove constant variables and expressions from loops” on page 39

“Avoid doubly nested loop constructs” on page 39

“Pull up multiple performance intensive method calls” on page 40

“Be wary of dot notation with object access paths” on page 41

“Avoid code that incidentally queries the database” on page 41

“Use comparison methods to filter queries” on page 42

“Use comparison methods instead of the Where method” on page 42

“Use Count properties on query builder results and find queries” on page 43

“Use activity pattern codes instead of public IDs in comparisons” on page 44

“Create single plugin instance” on page 44

Guidewire PolicyCenter 10.1.2 Best Practices Guide

46 chapter 5: Gosu language best practices

chapter 6

Upgrade best practices

An upgrade of your PolicyCenter installation comprises automated and manual procedures. The ways in which your
configure your PolicyCenter installation and the methods you use during an upgrade help determine the ease or
difficulty of the procedures for future upgrades.

See also

• Planning your upgrade in the Upgrade Guide

Upgradability best practices
Guidewire recommends a number of best practices to help prepare your PolicyCenter installation for future
upgrades.
• “Add minor changes directly to base files” on page 47
• “Copy base files to add major changes” on page 47
• “Copy base functions to make major changes” on page 48
• “Switching from minor to major changes” on page 48

Add minor changes directly to base files
Whenever you make only minor changes to a file, make them directly within the base file. If the file changes in a
future release, you can accept or reject the changes during the upgrade. Your changes and the changes in the new
release are visible side-by-side within your three-way merge tool while you merge the upgrade code manually.

Copy base files to add major changes
Whenever you make major changes to a file, make a copy of the file. Name the copy of file the same as the original,
with the customer identifier inserted. For example, make a copy of SomeBaseScreenDV.pcf and give it the name
SomeBaseScreen_ExtDV.pcf.
In the original file, add a comment at the top that states you copied the file to make major changes, and include the
filename of the copy. For example:
<!-- This file was copied to SomeBaseScreen_ExtDV.pcf -->

If the file changes in a future release, you will notice that the file was copied. You then can decide whether to
replicate the changes in the new file in your copy of the base version of the file. Especially if the change enhances
the base file or fixes a defect, you may want to apply the same changes to your copy of the file.

Upgrade best practices 47

Copy base functions to make major changes
Whenever you make major changes to a function, or method, defined in a Gosu class, make a copy of the function
and place it in a customer class. Give the copy of the function the same name as the original, with the customer
identifier as a suffix. For example, make a copy of SomeBaseFunction in a folder within your customer package,
such as com.Customername. Name the copied function SomeBaseFunction_Ext.
In the original function, add a comment at the top that states you copied the function to make major changes. For
example:
// -- This function was copied to SomeBaseFunction_Ext --

To confirm that you changed all existing code to use your copied function, temporarily rename the original function
and then compile your entire project to check for compilation errors. After you remove all calls to the original
function, consider commenting out the original function to prevent developers in the future from using it
accidentally.
If the function changes in a future release, you will notice that the function was copied. You then can decide whether
to replicate the changes in your copy of the base function. Especially if the change enhances the function or fixes a
defect, you may want to apply the same changes to your copy of the function.

Switching from minor to major changes

About this task

After you make minor changes to a file or function, you might decide to make additional major changes to the same
file or function. If you switch from making minor changes to making major changes, switch from the
recommendations for minor changes to the recommendations for major changes.

Procedure

1. Rename the base file or function by including the customer identifier.
For example, make a copy of SomeBaseScreenDV.pcf and give it the name SomeBaseScreen_ExtDV.pcf.

2. Restore the original base file from base.zip or from your source code repository.
3. Add a comment to the top of the restored base file or function to state that the file or function was copied.

For example:
<!-- This file was copied to SomeBaseScreen_ExtDV.pcf -->

4. Make your additional major changes to the copy of the file or function.

Upgrade best practices checklist
Use the following checklist before you complete your configuration of the base PolicyCenter installation to help
ease future upgrades.

Best Practice to Follow Best Practice Was Followed

“Add minor changes directly to base files” on page 47

“Copy base files to add major changes” on page 47

“Copy base functions to make major changes” on page 48

“Switching from minor to major changes” on page 48

Guidewire PolicyCenter 10.1.2 Best Practices Guide

48 chapter 6: Upgrade best practices

chapter 7

Rating Management best practices

Guidewire Rating Management provides a set of tools to manage and maintain rating in PolicyCenter. Guidewire
recommends a number of best practices for Rating Management.

IMPORTANT To determine whether your Guidewire PolicyCenter license agreement includes
Guidewire Rating Management, contact your Guidewire sales representative. Rating Management
requires an additional license key. For instructions on obtaining and installing this key, contact your
Guidewire support representative.

See also

• Application Guide
• Configuration Guide

Rating Management component naming conventions best
practices

Guidewire recommends a number of naming best practices for Rating Management components. Naming
conventions are intended to provide consistency, and make it easier to identify components by line of business and
purpose.
Component names are not required to be unique, but the identifying code must be unique. For easy identification,
Guidewire recommends that you use the same value for both component name and code.

Rating Management com‐
ponent

Naming convention Example

Rate book PackageName + DescriptiveName PAStandardCA – Standard for Personal Auto in
California

Rate routine PackageName + DescriptiveName + _rr PAAssignDriver_rr

Rate table PackageName + DescriptiveName +
_VersionNumber

PACoverageBaseRate
PACoverageBaseRate_v2

Parameter set PackageName + DescriptiveName PAVehicleStandardSet

Rating Management best practices 49

Package name

Follow these conventions for policy line package name:
• Use capital letters, such as CP or PA for Commercial Property or Personal Auto policy lines, respectively.
• If the rating component applies to all lines of business, use ALL.

Descriptive name

Follow these general naming conventions for DescriptiveName:
• Use mixed case with the first letter of each word capitalized.
• Do not use spaces.

Rate books

For DescriptiveName:
• If you have multiple rate books per policy line, then add underwriting company, jurisdiction, or offering codes to

differentiate the books.
• It is not necessary to append the words book or rate book.

Rate routine

Append _rr to easily identify rate routine codes as distinct from rate table codes.
For DescriptiveName:
• For a rate routine that calculates premium for a specific coverage, use the coverage code.

For example, a rate routine that calculates premium for Comprehensive coverage (PAComprehensiveCov is the
code) on a Personal Auto policy can be named: PAComprehensiveCov_rr.

• If a coverage has different rate routines that calculate premium for different types of risks, append the risk type to
the rate routine names. To use fewer characters, you can abbreviate the risk type.
For example, a rate routine that calculates premium for Collision coverage for occasional drivers (abbreviate to
OD) in a Personal Auto policy can be named: PACollisionOD_rr. The default rate routine for Collision coverage
can be named: PACollision_rr.

• If a rate routine applies to multiple coverages, then create a descriptive name. The name can be based on the
covered object. Add the word Coverages at the end.
For example, a rate routine that calculates premium for certain coverages with a covered object of
PersonalVehicle can be named: PAPersonalVehicleCoverages_rr.

Rate table

In DescriptiveName, do not include the word table. When doing a rate table lookup in a rate routine, PolicyCenter
displays table: before the name.
Rate tables do not have a version field. However, you can copy a rate table and create the equivalent of a new
version by including a version number in the name and code.
If you plan on versioning, then use a versioning identifier as a suffix. This can be a version number or additional
information that helps you identify the version, such as _v2 or _ISO2015. You can choose to add a version number
beginning with the second version.

Rate book edition naming conventions best practices
The rate book edition groups a specific set of rate table versions. The rate book edition must be unique for that rate
book. For the edition, you can use any sequence or numbering scheme that you prefer.

Guidewire PolicyCenter 10.1.2 Best Practices Guide

50 chapter 7: Rating Management best practices

For example:
• A series of numbers starting at 1 to be consistent with other Rating Management numbering schemes, such as

rate routine versions.
• Date in YYYMMDD format such as 20130101.
• Filing identifier such as CA-2012-39A.

Rate routine step naming conventions best practices
Observe these naming conventions for the instruction and operand types used in rate routine steps.
• Variables – Follow naming conventions for Gosu variable names as described in “Gosu naming and declaration

best practices” on page 27.
• Data model – Objects in the data model, including Cost objects follow naming conventions as described in

“Observe entity declaration naming conventions” on page 11. If you add new objects, follow these entity naming
conventions.

• Functions – Follow naming conventions for Gosu function names as described in “Gosu naming and declaration
best practices” on page 27.

Rating Management best practices checklist
Use the following checklist before you complete your rating management configuration tasks to ensure that your
implementation of rating management follows Guidewire best practices.

Best Practice to Follow Best Practice Was Followed

“Rating Management component naming conventions best practices” on page 49

“Rate book edition naming conventions best practices” on page 50

“Rate routine step naming conventions best practices” on page 51

Guidewire PolicyCenter 10.1.2 Best Practices Guide

Rating Management best practices 51

Guidewire PolicyCenter 10.1.2 Best Practices Guide

52 chapter 7: Rating Management best practices

	Best Practices Guide
	Contents
	Guidewire Documentation
	About PolicyCenter documentation
	Support

	Overview of best practices
	Data model best practices
	Entity best practices
	Observe entity declaration naming conventions
	Add a suffix to entity extensions
	Use singular words for field names except for arrays
	Add ID as a suffix to column names for foreign keys

	Typelist best practices
	Observe typelist naming conventions
	Add a suffix to new typelists and typecode extensions
	Do not rely on implicit conversion of typecodes to strings

	Script parameter best practices
	Other data model best practices
	Data model best practices checklist

	User interface best practices
	Page configuration best practices
	Modify base PCF files whenever possible
	Add a suffix to new PCF files to avoid name conflicts
	Avoid using Gosu code in PCF files

	Display keys best practices
	Use display keys to display text
	Use existing display keys whenever possible
	Observe display key naming conventions
	Add a suffix to new display keys to avoid name conflicts
	Organize display keys by page configuration component

	User interface performance best practices
	Avoid repeated calculations of expensive widget values
	Avoid expensive calculations of widget properties
	Use application permission keys for visibility and editability

	User interface best practices checklist

	Rules best practices
	Rules naming best practices
	Observe rule naming conventions
	Rule naming summary principles
	Root rules naming conventions
	Parent and child rules naming conventions

	Observe operating system length restrictions on rule names
	Get and display rule names in messages
	Assign a dedicated rules librarian to manage rule names

	Rules performance best practices
	Purge unused and obsolete rules before upgrading

	Rules best practices checklist

	Gosu language best practices
	Gosu naming and declaration best practices
	Observe general Gosu naming conventions
	Omit type specifications with variable initialization
	Add a suffix to functions and classes to avoid name conflicts
	Declare functions Private unless absolutely necessary
	Use public properties instead of public variables
	Do not declare static scope for mutable variables
	Use extensions to add functions to entities
	Match capitalization of types, keywords, and symbols

	Gosu commenting best practices
	Comment placement
	Block comments
	Javadoc comments
	Single-line comments
	Trailing comments
	Using comment delimiters to disable code

	Gosu coding best practices
	Guidewire internal methods
	Use whitespace effectively
	Use parentheses effectively
	Use curly braces effectively
	Program defensively against conditions that can fail
	Use case-insensitive comparisons
	Check for null values
	Allow default null-safe property access
	Usage of explicit null-safe operators
	Check boundary conditions
	Use structured exception handling

	Omit semicolons as statement delimiters
	Observe null safety with equality operators
	Rewrite comparison operators to avoid the equals method

	Use typeis expressions for automatic downcasting
	Observe loop control best practices
	Implement conditional operators in loop conditions correctly
	Interrupt loop execution as early as possible

	Return from functions as early as possible
	Use gw.api.util.DateUtil instead of java.util.Date

	Gosu performance best practices
	Consider the order of terms in compound expressions
	Avoid repeated method calls within an algorithm
	Remove constant variables and expressions from loops
	Avoid doubly nested loop constructs
	Pull up multiple performance intensive method calls
	Be wary of dot notation with object access paths
	Avoid code that incidentally queries the database
	Use comparison methods to filter queries
	Use comparison methods instead of the Where method
	Use Count properties on query builder results and find queries
	Use activity pattern codes instead of public IDs in comparisons
	Create single plugin instance

	Gosu template best practices
	Gosu best practices checklist

	Upgrade best practices
	Upgradability best practices
	Add minor changes directly to base files
	Copy base files to add major changes
	Copy base functions to make major changes
	Switching from minor to major changes

	Upgrade best practices checklist

	Rating Management best practices
	Rating Management component naming conventions best practices
	Rate book edition naming conventions best practices
	Rate routine step naming conventions best practices
	Rating Management best practices checklist

